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Abstract
An approach based on matrix formalism for solving dif-

ferential equations is described. Effective in sense of per-

formance matrix formalism can be tested with less effi-

cient, but accurate traditional algorithm of numerical sim-

ulation based on the Runge-Kutta scheme. In both cases

the symplectic version of the algorithms are used. The re-

sults coincide to analytical calculations, but some disagree-

ments have been identified. The approach implementation

is demonstrated in the problem of long-term spin dynamics

in electrostatic fields.

INTRODUCTION
Particles dynamics in electromagnetic fields is described

by Newton-Lorentz equation. This system of ordinary dif-

ferential equations can be solve by appropriate numerical

methods. In this research two approaches are developed.

Firstly, for step-by-step integration a symplectic Runge-

Kutta scheme is used. As second approach a mapping al-

gorithm based on matrix formalism [1] is implemented.

In the EDM search COSY Infinity [2] is also used.

COSY Infinity is known as a very powerful instrument for

particle tracking in electromagnetic fields. The key idea

of this research is to develop another high-performnce ap-

proach for simulation of spin-orbital dynamics. Both Ma-

trix Formalism and COSY Infinity allow to simulate spin-

orbital motion of millions of particles. So these methods

can be verified by each other. At present, in the EDM

search the MPI (Message Passing Interface) version of the

COSY Infinity program is installed on a supercomputer

with 3105 processors. For matrix formalism code we can

use OpenMP or OpenCL for running tasks on clasters in

St.Petersburg State University (e.g. GPU accelerators).

Due to the fact that one of the tasks in JEDI is exami-

nation of spin dynamics in electrostatic fields [3], in this

paper magnetic fields are not considered. But all described

techniques can be used in common case of electromagnetic

fields without modifications.

In the article particle dynamics is considered in 9-

dimensional space. A state of dynamic system is described

as (x, x′, y, y′, Sx, Sy, Ss, dv, t) vector, where x, x′ and

y, y′ are transverse and vertical displacement and velocity

respectively; Sx, Sy, Ss are components of spin vector in

curvilinear coordinate system (see Fig. 1); dv = Δv/v0 is

deviation of the initial particle velocity; t is time variable.

Note, that a state vector depends on arc length s, which is

chosen as an independent variable.

∗Work performed under JEDI collaboration (Juelich Electric Dipole

Moment Invenstigations)
† 05x.andrey@gmail.com

Figure 1: Curvilinear coordinate system.

The mathematical models that used for description of

partical motion and spin dynamics are presented in [4]. In

this article only numerical approaches are considered.

STEP-BY-STEP INTEGRATION
The Newton-Loretz (particle motion) and BMT (spin dy-

namics) equations can be written as following system

d

ds
X = F (s,X),

d

ds
v0 = 0,

(1)

where X = (x, x′, y, y′, Sx, Sy, Ss, dv, t).
This allows us to use classical step-by-step integration

methods to solve this system. Article [5] provide both

symplectic Runge-Kutta integration schemes, and the al-

gorithm for it derivation up to the 12 order. For the current

research a symplectic 2-stage Runge-Kutta scheme of 4 or-

der was implemented.

Table 1: 2-stage 4-order implicit Runge-Kutta scheme

b1 + c̃1 b1/2 b1/2 + c̃1
b1 − c̃1 b1/2− c̃1 b1/2

b1 = 1/2, 2b1c̃1
2 = 1/12

According to this scheme (Table 1), the solution of the

equations (1) can be presented in iterative form

Xn+1 = Xn + h
∑2

j=1 bjF(s+ hcj ,X
(i)),

X(i) = Xn + h
∑2

j=1 aijF(s+ hcj ,X
(i)).

This integration method provide a symplectic solution

by choosing of the corredponded coefficients aij , bj , cj .
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MATRIX FORMALISM
As mapping approach matrix formalism is used. It al-

lows to present the solution as set of numerical matrices

and operations of multiplication and addition only.

Matrix form of ODE
Under the assumptions of F (0, X0) = 0 the system (1)

can be presented in the following form [6]

d

dt
X =

∞∑
k=0

P 1k(t)X [k], (2)

where X [k] is kronecker power of vector X , matrices P 1k

can be calculate as

P 1k(t) =
1

(k)!

∂kF (t,X0)

∂(X [k])T
, k = 1, 2, . . .

Solution of system (2) can be written in form

X =
∞∑
k=0

R1k(t)X
[k]
0 . (3)

Elements of matrices R1k are depended on t and can be

calculated in symbolic mode [6]. But such algorithms are

quite complex. In this paper a numerical implementaton of

it is used. In this case matrices R1k are evaluated in the

specific time and presented as numerical matrices.

Symplectication
The relation (3) can be presented as map transformation

X = R ◦X0. (4)

This map R is symplectic if

M∗JM = J, ∀X0, (5)

where M = ∂X/∂X0 and M∗ is the transponse of M , E
is identity matrix,

J =

(
0 E

−E 0

)
. (6)

Relation (5) in case of numerical matrices R1k leads to

a system of equations

a0 +A1X0
[1] + ·+AkX0

[k] = 0,

where Ai is a numerical vector. Note that this equation

must be satisfied for any X0. It means that the coefficients

of each polynom are equal to zero and in this way appro-

priate corrections of the elements of the matrices R1k can

be found.

Imaging we have two numerical serial maps that cor-

responds to the different systmes of ordinary differential

equations

X1 =

k1∑
k=0

R1k
1 (t)X

[k]
0 ,

X2 =

k2∑
k=0

R1k
2 (t)X

[k]
1 .

Substituting X1 to the equation for X2 we obtain

X2 =

k1·k2∑
k=0

R̃1k
2 (t)X

[k]
0 .

As you can see the resulting map has order k1 · k2. But we

can use terms of order not higher than max(k1, k2)

SIMULATION OF ELECTROSTATIC
STORAGE RING

Electrostatic storage ring consist of elements with differ-

ent electric field distribution. In this research quadrupole

lenses, cylindrical deflectors and drifts are used. The or-

bital motion and spin dynamics of the particle are described

in [4]. Using these equations it is possible both serial track-

ing in each elements by step-by-step integration method

and to build matrix form for each lattice element and con-

catenate it. In this research the 3 order of nonlinearity for

resulting map is used. Moreover additionally correction of

elements of matrices R for symplectic condition satisfying

is completed. This symplectication procedure is performed

once for map.

Figure 2: Step-by-step integration.

COMPARISON AND RESULTS
Comparing the results of calculations through single el-

ement good coincidence in computational model between

matrix formalism approach and step-by-step integration

was found out. However different approaches, methods of

symplectication and so on introduces the calculation errors

for the whole ring. In the article it proposed to use the com-

parison based on behavior of particles in predefined test

cases.

Map concatenation
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Figure 3: Matrix formalism

In Fig. 2 and 3 transverse plane of a particle (lattice with

RF cavity) is presented. In these figures a particle motion

with kinetic energy deviation in 310−4 and zero transverse

displacement is shown. The similar correspondens in or-

bital motion of particles in longitudinal planes are also ob-

tained.

For a numerical comparison spin coherence time (SCT)

is used. SCT is the time of incogerent spin rotation on 2π
rad, that is equal to the time during which the RMS spread

of the spin orientation of all particles in the bunch reaches

one radian.

Table 2: SCT, sec

Case MF Tracking COSY Infinity
RF = OFF

Δx = 3mm, 1980 1418 3292

Δk/k = 0

Δx = 0mm, 0.301 0.243 323

Δk/k = 10−4

RF = ON

Δx = 0mm, 5813 5260 7316

Δk/k = 10−4

Δx = 0mm, 653 639 774

Δk/k = 310−4

In Table 2 SCT in sec for different numerical approaches

is shown. MF means mapping approach based on Matrix

Formalism, tracking column corresponds to the step-by-

step integration and COSY Infinity is a program for beam

dynamics simulation based on map building by differential

algebra concept. The results of simulation showed good

agreement beetwen matrix formalism approach and step-

by-step integration. SCT that was evaluated in COSY In-

finity program differs from these results. It can be caused

by different mathematical models, reference orbit design-

ing and etc. Note, that for tracking approach and matrix

formalism the same mathematical description of particle

motion and spin dynamics was used.

CONCLUSION
The tracking approach is devoted to the high precesion

step-by-step integration. On the other hand there are exist

mapping algorithms for beam dynamic simulation. Such

methods allows to build map corresponded to the dynamic

system. Matrix formalism is a high performance approach

for ordinary differential equations solving. Comparison of

these two numerical methods shows good correspondes be-

tween them. So the matrix formalism can be succesfully

used for long-term beam dynamics simulation.

We also plan to modify the given approaches for the di-

rect calculation of the effect of EDM, fringe fields, etc.,

without significantly reducing of the calculation perfor-

mance.
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