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Abstract
A challenge for nuclear physics is to measure masses of

exotic nuclei up to the limits of nuclear existence which are
characterized by low production cross-sections and short
half-lives. The large acceptance Collector Ring (CR) [1]
at FAIR [2] tuned in the isochronous ion-optical mode of-
fers unique possibilities for such measurements. However,
the mass-measurement resolution is inversely proportional
to the transverse emittance. In order to reach a resolving
power of 105 the transverse beam emittance would have to
be limited up to 10 mm mrad in both planes, which dras-
tically reduces the transmission of the exotic nuclei. We
demonstrate here that the negative influence of the trans-
verse emittance on the mass resolution can be significantly
reduced by a proper second-order correction.

Isochronous Mode of the CR
The Collector Ring of the FAIR project is a symmetric,

achromatic ring with two arcs, two straight sections and a
total circumference of 221.5 meters. It is designed for op-
eration at a maximum magnetic rigidity of 13 Tm. The CR
will be operated in three ion-optical modes, two of them
providing fast pre-cooling of either antiprotons or radioac-
tive ion beams [1]. In the third mode (isochronous optics)
the CR will be operated as a Time-Of-Flight (TOF) spec-
trometer for the mass measurement of exotic very short-
lived nuclei (T1/2 > 20μs) produced and selected in flight
with the Super-FRS fragment separator [3]. This technique
for mass measurements has been developed at the ESR at
GSI [4]. An advantage of this method is that a large number
of nuclei can be measured in one experimental run.

The relative change of revolution time T due to different
mass-to-charge ratio m/q and velocity υ of the stored ions
circulating in the ring is [5]:
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where γ is the relativistic Lorentz factor and γt is the tran-
sition energy of the ring. The isochronous condition is
reached when γ = γt. It means, the second term in Eq. (1)
vanishes and T defines the m/q. The resolution depends
on the width of the time dT . Effects of nonlinear field er-
rors, fringe fields of magnets, closed orbit distortion and
transverse emittance negatively act on dT . Their influence
has been investigated in [5].

Ions with different m/q are separated in time if their
mean time separation ΔT is larger than the full time width
of the beam.

ΔT > dT. (2)

Influence of Transverse Emittance

For good adjustment of γt the largest contribution to dT
comes from the second-order geometric aberrations. In or-
der to distinguish their influence, we consider a beam of
one species in the ideal isochronous ring without higher-
order field errors, fringe fields and closed orbit distortions.
Only pure betatron motion exists. For such a ring the
time spread is directly related to the transverse emittance
(εx,y) [5]:
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y >

)
, (3)

where <γTwiss
x,y > are the Twiss parameters averaged over the

whole circumference of the ring.

Thus, from Eqs. (1, 3) one can derive the mass resolving
power depending on the beam emittance [5]. For the CR,
where acceptance is 100 mm mrad in both planes, the limit
of the mass resolving power is about 104, which is insuffi-
cient for precise mass measurements. Therefore, in order to
reach the necessary resolving power of 105 the transverse
emittance would have to be limited to 10 mm mrad in both
planes. As a result, the transmission of the ions into the
ring would be reduced drastically.

Revolution Time in Second-Order

However, the mass resolving power can be improved
using second-order corrections and keeping the transverse
emittance large. Let us assume a beam of one species cir-
culating in the ring turn by turn. We observe it in the sym-
metry plane of the ring where the phase-space ellipse is
upright (αTwiss =0) and this condition is restored after each
turn.

Statistical uncertainty gets reduced with increasing num-
ber of revolutions, and for accurate mass measurements it is
essential to measure the revolution time of the particle over
many turns. Therefore, the relative revolution time devi-
ation between an arbitrary and the reference particle can
be expressed in terms of the initial coordinates as a Taylor
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Figure 1: Evolution of the relative second-order geometric aberra-
tions as a function of the number of turns in the CR. The aberrations
(t|xx)cx2, (t|xa)cxa, (t|aa)ca2 are marked in blue, black and red col-
ors, respectively. The inserted numbers show the limit over many turns.

series in a second-order approximation [6, 7]:

dT

T
=

T − T0

T0

= (t|x)cx+(t|a)ca+(t|δ)cδ+(t|xx)cx
2+

+ (t|xa)cxa + (t|aa)ca
2 + (t|yy)cy

2 + (t|yb)cyb+

+ (t|bb)cb
2 + (t|xδ)cxδ + (t|aδ)caδ + (t|δδ)cδ

2, (4)

where (x, y) are the transverse coordinates and (a, b) their
derivatives with respect to the longitudinal coordinate s.
The index c stamps for the coefficients normalized by the
total time-of-flight t = nT0, where n is the number of
turns. The fractional momentum deviation δ is given by
p = p0(1 + δ). T0 and p0 are the revolution time and the
momentum of the reference particle, correspondingly.

In the first-order achromatic ring the first-order trans-
verse matrix elements (t|x) and (t|a) simultaneously van-
ish [7, 8]. The necessary condition to be an isochronous
ring in the first-order is (t|δ) = 0 i.e. γ = γt. The second-
order isochronous condition is fulfilled when (t|δδ) = 0,
which can be corrected with one family of sextupole mag-
nets installed in a dispersive section of the ring. The mixed
aberrations (t|xδ)cxδ and (t|aδ)caδ usually do not con-
tribute much to the revolution time. Their influence is neg-
ligible and we can skip them here.

Therefore, only the second-order geometric aberrations
in time of Eq. (4) are significant. Without correction their
contribution corresponds to the right part of Eq. (3) i.e. the
transverse emittance. For simplicity we inspect only the
horizontal plane, the arguments for the vertical plane are
the same.

Geometric Aberrations and Chromaticity
The matrix elements (t|xx), (t|xa) and (t|aa) can be ex-

pressed for the achromatic ring as [7, 9]:

(t|xx) = λ · [(x|x)(a|xδ) − (a|x)(x|xδ)], (5)

(t|xa) = λ · [(x|x)(a|aδ) − (a|x)(x|aδ)], (6)

(t|aa) = λ · [(x|a)(a|aδ) − (a|a)(x|aδ)], (7)

where λ is a constant with the dimension of inverse veloc-
ity. The coefficients in Eqs. (5-7) correspond to the terms
of the transfer matrix M , which for the full circumference
can be expressed by the betatron functions β(s), α(s) and
the betatron phase advance μ(s):

M =

(
cosμ β sin μ

− 1

β sin μ cosμ

)
≡

(
(x|x) (x|a)
(a|x) (a|a)

)
, (8)

Due to the oscillatory character of betatron motion the co-
efficients (t|xx)c, (t|xa)c, (t|aa)c fluctuate with the num-
ber of turns and after many revolutions average out (see
Fig. 1). The aberration (t|xa)cxa becomes negligible.
(t|xx)cx

2 and (t|aa)ca
2 aberrations become equal at a con-

stant value, which can be explained by the mirror symme-
try [10].

The terms (x|aδ) and (a|xδ) are connected via [9]:

(x|aδ)(a|x)=(x|x)(a|aδ)−(a|xδ)(x|a)+(x|xδ)(a|a). (9)

Combining Eqs. (5, 7-9) we obtain:

(t|aa) + β2(t|xx) =
λβ

sinμ
[(x|xδ) + (a|aδ)]. (10)

On the other hand the relative natural chromaticity ξ1x can
be written as (see appendix):

ξ1x = −
1

4πQ0xsinμ
· [(x|xδ) + (a|aδ)], (11)

where Q0x is the tune of the ring. Therefore, combining
Eqs. (10, 11) one gets:

(t|aa) + β2(t|xx) = −4πλβQ0xξ1x. (12)

The β is constant at the symmetry point and due to
αTwiss =0 it can be expressed as β = x/a and πεx = πxa.
Then Eq. (12) can be written as:

(t|aa)a2 + (t|xx)x2 = −4πλεxQ0xξ1x. (13)

In general, due to the mirror symmetry two chro-
matic matrix coefficients coincide in the achromatic ring:
(x|xδ) = (a|aδ) [11]. The natural chromaticity can be
corrected using one family of sextupole magnets and there-
fore, we can reach a regime where the (t|xx) and (t|aa)
contribution vanishes and in the limit of many turns the
isochronous ring turns into a second-order achromatic sys-
tem [12, 13].

Monte-Carlo Simulation
To check the analytic derivation described above a dedi-

cated Monte-Carlo simulation has been performed with the
program MOCADI [14]. In this program an ion-optical
system is described by third-order transfer matrices which
have been calculated with the GICOSY code [15].

In the simulations we have used a beam of 105 particles
of one species with transverse emittance of 100 mm mrad
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Figure 2: The revolution time spread as a function of the momentum deviation.

in both planes circulating 100 turns in the CR. The depen-
dence of the revolution time spread on the momentum de-
viation in the ring has been calculated.

At first, we have corrected only the second-order
isochronicity with one sextupole family (grey distribution
in Fig. 2). Then, the natural chromaticity ξ1x,y with two
additional sextupole families has been corrected (blue dis-
tribution in Fig. 2).

Moreover, applying the octupole magnets in the same
manner as sextupoles, we have corrected third-order
isochronicity ((t|δδδ) = 0) and second-order chromatic-
ity (ξ2x,y) with three octupole families (yellow distribution
in Fig. 2).

The broad grey time distribution in the left picture of
Fig. 2 is governed by the large transverse emittance and
corresponds to about 1.7 ·10−5 in time resolution (or about
2 · 10−4 of mass resolving power). By correcting in ad-
dition the natural chromaticity (blue distribution in the left
picture of Fig. 2) the influence of the transverse motion is
significantly reduced and a resolution of up to
dT/T ≈ 2 ·10−6 (or m/Δm ≈ 2 ·105) in the full momen-
tum acceptance range can be achieved. Applying in addi-
tion the octupole correction (see the yellow distribution on
the right picture in Fig. 2) one can reach a resolution of
up to dT/T ≈ 3 · 10−7, which corresponds to the mass
resolving power of about 106.

Appendix

The phase advance μ can be expanded with respect to δ
as [16]:

μ =

∞∑
n=0

μnδn, or cosμ =

∞∑
n=0

χnδn. (14)

Since cosμ is the trace of the transfer matrix M (see Eq. 8),
which can also be expanded with respect to δ one can ob-
tain χn = 0.5 · Tr(Mn), where Mn is:

Mn =

(
(x|xδn) (x|aδn)
(a|xδn) (a|aδn)

)
, n = 0, 1, 2, 3, .. (15)

Thus, from Eqs. (14,15) one can extract the phase advance
described in matrix coefficients and correspondingly obtain
the chromaticity:

ξx =
1

δ
·
ΔQ

Q0

=
Δμ

2πδQ0

=
1

2πQ0

∞∑
n=1

μnδn−1. (16)
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