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Abstract 
At the heavy ion collider NICA presently promoted at 

the JINR, the beam cooling will play the crucial roles to 
attain the designed performance. The primary goal of the 
collider is to achieve the high luminosity ~1e27 /cm2/sec, 
preventing the IBS diffusion effects by beam cooling to 
keep the luminosity during the experimental period. The 
other purpose of the cooling is to accumulate the required 
beam intensity up to several times 1e10 from the injector 
Nuclotron with use of the barrier bucket method. After 
the BB accumulation the coasting beam is adiabatically 
bunched with the help of RF field and the beam cooling. 
In the present paper the detailed simulation results are 
presented for the above process mainly in the longitudinal 
freedom. 

INTRODUCTION 
The heavy ion collider proposed at the JINR aims to 

achieve the head-on collision of 1-4.5 GeV/u, 197Au79+ ion 
beam with the luminosity of ~1e27/cm2/sec. [1] The 
number of bunches in the collider is 24 and each bunch 
contains the ion number of ~1e9, depending upon the 
operation energy. Thus totally around ~2.4e10 ions 
should be accumulated in the collider ring. The injector 
for the collider is the existing superconducting 
synchrotron, Nuclotron, which could provide the beam of 
1-4.5 GeV/u with the intensity of 1e8-1e9/cycle of the 
cycle time 5 sec. The bunch length of the beam from the 
Nuclotron is around 1/3 of the circumference, 300 nsec. 
[2, 3]  

In the present scenario, the bunch is transferred to the 
collider without any manipulation for the short bunch 
formation in the Nuclotron which allows us much easier 
operation of the Nuclotron. The long bunch is transferred 
in the longitudinal injection area which is provided by the 
barrier voltages, and is accumulated with the assistance of 
stochastic cooling for the high energy and the electron 
cooling for the low energy, say below 2 GeV/u. 

Thus accumulated heavy ion beam is the coasting beam 
condition, and then the large RF voltage is applied 
adiabatically as well as the beam cooling. The beam is 
gradually bunched to the required rms bunch length for 
the collision experiment ~2ns (rms). The bunch length is 
the equilibrium state of RF field, beam cooling, Intra 
Beam Scattering (IBS) and space charge repulsion. 
Especialy at low energy, the IBS diffusion and space 
charge force could affect the beam motion at the short 
bunch condition.  

The detailed analysis of the beam dynamics for the 
stochastic cooling application was reported elsewhere [4] 
and here the main emsphasis is given on the electron 
cooling and space charge problem.  

STOCHASTIC COOLING 
The operation energy of the collider is from 1 GeV/u 

to 4.5 GeV/u where the ring slipping factor is drastically 
changed. In Table 1 the ring slipping factor, transition 
gamma being fixed as 7.09 and the local slipping factor 
from the stochastic cooling PU to Kicker are tabulated. 
The distance from PU to kicker is assumed as 170 m. The 
coasting equivalent particle number is given as the 
product of bunch number/ring, number of ions /bunch and 
the bunching factor. Thus obtained coasting equivalent 
particle number is corresponding to the condition that the 
peak intensity of the bunched beam are populated as the 
coasting beam in the ring. 
 

Table 1. Beam parameters for various energies 
Energy (GeV/u) 1.5 2.5 3.0 4.5 
Ring slipping factor 0.1268 0.0537 0.0350 0.00949 

Local slipping 
factor 

0.1173 0.0442 0.02546 -5.4e-5 

Particle 
number/bunch 

3.0e8 1.50e9 2.50e9 6.0e9 

Coasting equivalent 
particle number 

7.26e10 3.63e11 6.05e11 1.45e12 

 
The bandwidth of the stochastic cooling system is 

preferably as wide as possible because the cooling time is 
inversely proportional to the bandwidth. On the other 
hand the momentum acceptance of the cooling system is, 
in general, becomes narrower for the wider bandwidth. 
Also the momentum acceptance is closely related with the 
ring slipping factor as well as the local slipping factor. In 
the present scenario the Palmer cooling method is 
envisaged where only the local slipping factor limits the 
momentum acceptance. Presently two bandwidth, 2-4 
GHz and 3-6GHz are candidates.  
       
Barrier Bucket Accumulation with Stochastic 
Cooling 

The beam accumulation is designed to use the fixed 
barrier bucket method whose concept was experimentally 
verified at the POP (Proof Of Principle) experiment at the 
ESR GSI.[5] It should be noted that the POP experimental 
results are in well agreement with the simulation results. 
[6] The parameters of the barrier voltage as well as the 
stochastic cooling in the collider are tabulated in Table 2.  

In the present simulation, the PU and kicker 
structure is assumed as the classical λ/4 electrode 
structure. In the meanwhile the new structure is being 
developed [7] which has the larger sensitivity and then the 
small number of electrode could be enough. Then the 
parameters of stochastic cooling system could be slightly 
changed in the construction phase.  
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The particles are injected in the unstable area 
between two barrier voltages and they are flowed into the 
lower potential region, stable area within the cycle time of 
10 sec. The particle distribution after 30 pulse stacking is 
represented in Fig. 1 for 3.5 GeV/u ions. Details of beam 
simulation code are given in the reference paper [8]. 
 

Table 2. Parameters of Stochastic Cooling 
 & Barrier Voltage 

Particle 197Au79+ 
Ring circumference 503.04 m 
Number of injected particle 1e9/cycle 
Injected momentum spread 3e-4 (rms) 
Injected bunch length 300 nsec 
Ring slipping factor 0.00845 
Dispersion at PU & Kicker 5.0 m & 0.0 m 
Band width 2 - 4 GHz or 3-6 GHz 
Number of PU & Kicker 128 or 64 
PU Impedance 50 Ohm 
Gain 120 dB 
Atmospheric temperature 300 K 
Noise temperature 40 K 
Barrier voltage 2 kV 
Barrier frequency 2.5 MHz (T=400 nsec) 
Injection kicker pulse width 500 nsec 
Transverse emittance 0.3 π mm.mrad 

      

      

      
Fig. 1. Phase space mapping of the particles at the 1st 
injection (top) and after 30 stacking (bottom). The 
particles are represented with red dots and the barrier 
voltages are blue line. The injected beam is located in the 
central unstable area. Ion energy is 3.5 GeV/u. 
 

The increase of the accumulated particle number is 
given as a function of time in Fig. 2 where also the 
accumulation efficiency is given. The accumulation 
efficiency is defined as the ratio of accumulated particle 

number to the total injected particle number. It is 
gradually decreased to 90 % after 50 pulse injection. The 
cooling system gain should be reduced against the 
increase of particle number so as to suppress the Schottky 
noise. The required microwave power is 800 Watt at the 
beginning of gain 115 dB. 

  
Fig. 2. Increase of accumulated particle number as a 
function of time. Red line: accumulated particle number. 
Green line: accumulation efficiency. Energy is 3.5 GeV/u. 
  
Short Bunch Formation with Stochastic Cooling 
 

The process of short bunch formation can be separated 
in two steps. At the first step the 200 kV RF voltage of 
harmonic number equal to the required bunch number 
(h=24), is adiabatically applied to the coasting beam. In 
parallel the stochastic cooling system is applied of which 
the gain is gradually decreased. Thus pre-bunched beam 
has the bunch length of 3 ns (rms) and Δp/p of 6e-4 (rms). 
In the 2nd step, this bunch is re-captured by the 500 kV RF 
field of harmonic 96 or 120. The gain of stochastic 
cooling system is kept constant as 80 dB in the 2nd step 
during further bunching.  

The evolution of bunch length and the relative 
momentum spread during the 2nd bunching process are 
given in Fig. 3.  When the stochastic cooling is applied, 
the equilibrium values of bunch length is attained at 1.2 
nsec and Δp/p (rms) is 8e-4 while they are increased 
gradually due to the IBS heating effects without cooling. 

The RF hardware for these beam manipulation is now 
being designed [9]. 

 ELECTRON COOLING 
For the lower energy less than 2.5 GeV/u the 

stochastic cooling could not work well as the slipping 
factor becomes so large (see Table 2). For such low 
energy operation, obviously the electron cooling is 
effective. The designed electron cooler parameters are 
given in Table 3. 
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