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Abstract 
Analytical calculations and numerical simulations 

have been done for mechanical eigenmodes of quarter 
wave superconducting resonators with operating 
frequency of 106 MHz and 80 MHz. A possibility of 
frequency shift of mechanical modes in 106 MHz 
resonator has been estimated by application of the 
damper. We have optimized the damper's position for 
suppression efficiency. We have also compared the 
numerical and experimental results.   

INTRODUCTION 
Superconducting quarter wave resonators (QWR) are 

used very often in particle accelerators at relatively low 
particle velocities β < 0.15. They operate in frequency 
range from 70 to 160 MHz. The structure of commonly 
used superconducting QWRs is enough sensitive for 
mechanical vibrations because of their length of 0.5-1 m 
made from 2-3 mm thin sheets of Nb. Superconducting 
cavities inside of cryomodule affected by various factors 
such as vibrations from environment and vacuum pumps, 
instant impacts from valves, oscillations of liquid He 
pressure. Hence, a wide spectrum of mechanical 
oscillations is applied to the cavity and could excite 
mechanical oscillations deforming the cavity geometry 
and providing substantial deviations of resonant 
frequency. It causes instabilities in cavity operation. 
There are several ways to mitigate this problem:  

• To keep mechanical resonances in higher 
frequencies region  to be far away from strong 
industrial noise components of 50-60 Hz 

• To make cavity structure more rigid to reduce 
sensitivity for vibrations 

• To make operational bandwidth of the cavity 
higher than frequency deviation caused by 
mechanical vibrations 

•  To use mechanical damper [1] to dissipate energy 
of mechanical vibrations. 

The most effective way of microphonics suppression is to 
develop mechanical dampers for the cavities. 

This paper is focused on investigation of mechanical 
oscillations in 106 MHz [2] superconducting QWR with 
mechanical damper. The cavity design presented in Fig. 1. 

 

Figure 1: Design of the 106 MHz superconducting Nb 
QWR with mechanical damper. 

ANALYTICAL CALCULATIONS 
Inner conductor of the QWR is the most sensitive part 

to mechanical impacts. Frequencies of mechanical modes 
fi of the inner conductor can be roughly estimated by 
using an approach of a thin-wall cylinder fixed at one 
edge [3]. 
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where E is Young’s modulus; L = 685 mm is the length of 
the inner conductor; µ is the mass of the inner conductor 
per unit length; αi is the intrinsic constant of oscillation 
(α1 = 1.875, α2 = 4.694 for the first and second modes, 
respectively); ( )44

4 io rrI −=
π  is the moment of inertia of a 

thin-wall cylinder with radii of ri and ro. 
According to these formulae, the frequencies of the 

lowest mechanical modes are f1 = 46.5 Hz and  f2 = 291.2 
Hz for the resonator with an operating frequency of 80 
MHz; and f1 = 72.7 Hz and  f2 = 455.7 Hz for the 
resonator with an operating frequency of 106 MHz. 
According to [3], the frequencies of the first two modes of 
the inner conductor of 80 Hz resonator are f1 = 45 Hz and 
f2 = 284 Hz. The difference between results might be 
explained due to approximation of the theoretical model 
which did not take into account a complicated shape of 
the inner conductor. 
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Figure 4. The lowest mechanical mode of the inner 
conductor with damper. 

To achieve the maximum displacement of the lowest 
mode frequency, optimization of the damper's position,  
we have changed the length of cylindrical base of the 
damper. Simulations in ANSYS were done for the models 
with the damper's base lengths from 100 mm to 600 mm. 
Figure 6 shows the plot of the inner conductor first mode 
frequency as a function the length of the damper's base. 

 
Figure 5: Plot of the inner conductor first mode frequency 
as a function of the length of the damper's base. 

The hughest frequency of the inner conductor  first 
mode was obtained for the damper's base length of 343.5 
mm . It equals to 84.1 Hz which  is 20.7% above the value 
of the frequency in the structure without damper 
application.  

 

 

 

 

 

 

 

 

 

SUMMARY 
Analytical and numerical simulations of the 

mechanical modes in 80 MHz and 106 MHz resonators 
have been done. The comparison of mechanical 
frequencies of 80 MHz resonator obtained using 
analytical calculations,numerical simulations and 
previously obtained data was done. The mentioned 
techniques provide the reasonable agreement. The highest 
frequency displacement of the first inner conductor mode 
o is achieved by the application of a damper. The studies 
will be continued for damper efficiency optimization. 
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