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Abstract 
 Magnetic systems are widespread in nature and 

technics. It is atoms in crystal grid of ferromagnetic, 

magnets of accelerating installations, space satellites 

stabilization systems etc. Due to high cost of full-scale 

study of such systems during last decades mathematical 

modeling and numerical analysis with computer started to 

come to the fore. The methods of finite differences, finite 

element, boundary integral elements and others are 

mainly used for the numerical analysis of the magnetic 

systems. Each of mentioned methods has its own 

advantages and disadvantages [1]. The main shortcoming 

of all listed methods is necessity in generation and 

adjustment new computational grid according to 

characteristics of each area. The structural-variational 

method of R-functions [5,6,8], proposed by Rvachev 

V.L., academician of National Academy of Sciences of 

Ukraine, is an alternative to all existing methods of 

numerical calculation of magnetic particles. In the context 

of solving mathematical physical problems the R-function 

method allows to create the structures for solving the 

boundary value problems – the bundles of functions that 

exactly meet the boundary conditions of the problem. 

With this approach the geometry of the area is accurately 

taken into account. So, the development of existing 

methods of numerical analysis of magnetic systems with 

R-function methods is the scientific problem of current 

interest. 

PROBLEM DEFINITION 

Consider a magnetic system (figure 1), consisting of 

ferromagnetic f
  and vacuum 

v
  with closed current 

windings 
c

 . Magnetostatic problem is stated – find the 

magnetic field distribution, that created by steady currents 

and magnetization of isotropic ferromagnetics [2,3]. Let’s 
assume that lengthwise cut is substantially larger than the 

transverse. Then vector potential of magnetic induction 

vector will have only one nonzero coordinate ( , )u u x y  

and we can proceed from Maxwell's system of equations 

for stationary magnetic field to scalar equation 

0

1 1
( , )

z

u u
J x y

x x y y

                  , 
2( , )x y  .    (1) 

Here   is function of the permeability of a 

ferromagnetic, which is known in f
  nonlinear function 

from magnetic field intensity vector (for nonmagnetic 

environment 1  ), 
0  is vacuum magnetic 

permeability, ( , )
z

J x y  is z component of volumetric 

current density vector, that is different from 0 only in 
c

  

and satisfies the equation ( , ) 0,

c

z
J x y dxdy


  

( , ), ( , ) ,
( , )

( , ), ( , ) .

f f

v v

u x y x y
u x y

u x y x y

    

Equation (1) should be supplemented with conjugation 

conditions at the border fv
  that separates ferromagnetic 

and vacuum 

fvfv
f v

u u   ,  
1

fvfv

f v
u u



   n n
, (2) 

where n  is the unit vector normal to fv
 , and with 

conditions on infinity:  

2 2
lim 0

x y

u   . (3) 
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Figure 1: Magnetic system. 

BUILDING OF SOLVING STRUCTURE 

 Let’s replace condition on infinity (3) with other 

condition  
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0

0u   , (4) 

where circuit 
0 is far enough from f

 (figure 1). For 

instance, we can select circle 
2 2 2

0x y R   as a 
0 with 

sufficiently large 
0 .R   

Supposing 
0  as the computational domain of problem 

(1), (2), (4). 

Assume that 
0 ( , )x y  has the following properties 

1) 
0 ( , ) 0x y   in 

0 ;  

2) 
0 ( , ) 0x y   on 

0 . 

Function 
0 ( , )x y  with mentioned properties can be 

built as a single analytical expression using structural unit 

of R-functions [8]. 

Then bundle of functions 
0u     will meet the 

condition (1) for any choice of indefinite component   

[4,8]. 

To meet the transmission conditions (2), we should use 

the following approach [9]. The function ( , )u x y  will be 

sought in the form:  

0 1 0

0

( , ) ( ),
( , )

( , ) ,

( , ) , ( , ) .

fv

f fv

v

f v

u x y A D
u x y

u x y

x y x y

          
 

  (5) 

where 0
fv

   is normalized equation of the boundary 

fv
  and 0

fv
   in f

  and operator 1

fv
D  determined 

by following equation 

1

fv fvfv
D

x x y y

       . 

Operator 1

fv
D  has property 

1
fv

fv

fv u
D u  

 n
, where 

n  is unit vector normal to fv


 
inward .

f
  Then 

1 1
fv

fv

fvfv

fv
D  

  n
. 

Notice, that function of the form (5) with any choice of 

constant A  meets the first conjugation condition (2). So, 

we should choose function A  to meet the second 

conjugation condition (2). 

We have:  

1

1 1

fv

fv

f fv

f

u
D u

n 

      

1 0 1 0

1
[ ( )]

fv

fv fv

fv
D A D       

 

1 0

1
(1 ) ( )

fv

fv
A D


    , 

1 1 0( )
fv fv

fv

fv fvv

v

u
D u D 

    n
. 

So, the second conjugation condition (2) will be met, if 

1
(1 ) 1A  , i.e

 
1A   . 

Summarizing, the problem (1), (2), (4) solving structure 

will be:  

0 1 0

0

(1 ) ( ), ( , ) ,
( , )

, ( , ) .

fv

fv f

v

D x y
u x y

x y

             (6) 

CONSTRUCTION OF THE 

APPROXIMATE SOLUTION 

 To build an approximate solution for problem (1) – (3) 

the undefined component   in structure (6) should be 

approximated with following expression 

1

n

n i i

i

c


   , (7) 

where { }
i
  is complete in 

2 0( )L   system of functions 

(trigonometric or exponential polynomials, splines etc.), 

1 , ...,
n

c c   are unknown coefficients. Substituting (7) into 

(6) wiw i will show us that approximate solution of the 

problem (1) – (3) sought in the form 

1

( , )
n

n i i

i

u x y c


  , (8) 

where 

0 1 0

0

(1 ) ( ), ( , ) ,

, ( , ) .

fv

i fv i f

i

i v

D x y

x y

              

We can use variational or projectional methods to find  

1 , ...,
n

c c   coefficients. For instance, following the 

Galerkin method, we can find 
1 , ...,

n
c c   from orthogonal 

residuals condition by substituting (8) into (1) to 

functions 
1 , ...,

n
    [7]. This will lead us to the system of 

equations 

1

n

ij i j

i

а c b


 , 1, ...,j n   , 
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where 

0

1 1i i

ij j
a dxdy

x x y y

                    , 1, ...,i j n   , 

0 ( , )

c

j z j
b J x y dxdy


   , 1, ...,j n   . 

COMPUTATIONAL EXPERIMENT 

For the test problem as 0 chose a circle of radius 0R  

and a ferromagnetic also bound it with circles of radius r  

and R  ( r R ). Then functions 0  and fv
 could be 

taken in like 

2 2 2

0 0( , )x y R x y    , 

 
2 2 2 2 2 2

0

1 1
( , ) ( ) ( )

2 2
fv

x y x y r R x y
r R

                , 

Where 0  —  is a 0R -conjunction symbol [8]: 

2 2

1 0 2 1 2 1 2g g g g g g     . 

Computational experiment was conducted for next 

values 0 20R   m, 10R   m, 3r   m, 
7

0 4 10    

H/m, 700   H/m, c
  it is described by next inequality 

2 21 ( 1) 0x y    ,
8 2 2( , ) 10 (1 ( 1) )

z
J x y y x y    А/m.   

Chose system of harmonic polynomials as the functions 

of the system { }
i
  in the implementation of the Galerkin 

method. On figure 2, 3 is a represented received 

component surface
x

u
B

y

  , y

u
B

x

    an magnetic 

induction vectors. 

 

 

Figure 2: Surface Bx. 

 

Figure 3: Surface By. 

CONCLUSIONS 

 In the work, for the first time the structural method of 

R-functions was used for the numerical analysis of the 

magnetic system, which simulates the work of accelerator 

facility. It allowed us to build numerical method, which 

counts the geometric and analytic information from the 

problem input accurately, and allows to obtain an 

approximate solution analytically, that facilitate finding 

different characteristics of magnetic system. 
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