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Abstract

Mechanisms of x-ray generation by relativistic electrons

in the energy range below 100 MeV by interaction with

crystals are discussed in view of possibility to obtain self

amplification of spontaneous emission. To investigate the

initial stage of self amplified spontaneous emission process

the first-order perturbation theory that enables to describe

the collective beam response as effective susceptibility is

used. Based on this approach Cherenkov radiation in the

anomalous dispersion frequency range, parametric x-ray

radiation and axial channeling radiation mechanisms are

considered. The axial channeling mechanism in the case of

grazing incidence electrons was shown to be most promis-

ing one.

INTRODUCTION

X-ray Free Electron Lasers (XFELs) open new revo-

lutionary opportunities for investigations in materials sci-

ence, chemistry, biology and other areas. However, due to

high cost of construction and maintain, the access to these

facilities for wide scientific community is quite limited.

This motivates search for schemes of compact bright x-ray

sources. The size of X-ray Free Electron Lasers is dictated

by basic properties of undulator radiation: to produce x-

rays with Angstrom wavelength from cm period undulator

one needs electrons with energy in GeV range. If one con-

siders the radiation mechanisms accompanying the propa-

gation of electron beam through a crystal structure (chan-

neling radiation, parametric x-ray radiation, Cherenkov ra-

diation near K-edge), one can see that to get photons in

x-ray range one needs electrons with energy of tens to hun-

dreds MeV. The dramatic 10 orders of magnitude increase

of brightness of XFELs compared to III generation syn-

chrotron became possible due to phenomenon of self am-

plified spontaneous emission (SASE). In the case of XFELs

the spontaneous emission which is amplified is the un-

dulator radiation, the SASE process being developed due

to high charge, short duration and small emittance of the

bunch as well as long undulator length. In the present pa-

per we will investigate the possibility of SASE process for

which as a spontaneous radiation mechanisms serve x-ray

radiation mechanisms in crystals. The development of rig-

orous SASE theory in this case is extremely difficult task

due to large number of phenomena accompanying electron

propagation in crystals and complexity of SASE phenom-

ena itself, however, one can use the first order perturbation

theory to describe the first stage of SASE process [1] and

determine the most promising radiation mechanism and ex-
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periment geometry.

RADIATION MECHANISMS

One of the ways to find at which conditions x-ray radi-

ation of electrons in crystal will take place is to find phase

match between the electromagnetic field that can exist in

the crystal and current of electron in the crystal. In the

Fourier space this condition can be expressed as intersec-

tion of dispersion surface of electromagnetic radiation

k2 −
ω2

c2
(1 + χ(ω)) = 0 (1)

here χ(ω) is the susceptibility of the crystal; and condition

that should be satisfied for Fourier components of a single

electron current

ω − ~k · ~v = 0 (2)

here ~v is the velocity of electron. In order to organize in-

tersection of (1) and (2) one can act in two ways: either

modify properties of the medium to bring (1) in intersec-

tion with (2), or modify the movement of the electron and

correspondingly (2) to bring it in intersection with (1). Let

us name the first scenario as case I and the second as case

II.

In the x-ray domain for electrons in crystals case I can

be realized if Reχ(ω) > 0 that leads to Cherenkov radia-

tion, or under the Bragg diffraction conditions under which

dispersion equation (1) is modified to

[

k2 −
ω2

c2
(1 + χ0)

] [

(~k + ~H)2 −
ω2

c2
(1 + χ0)

]

− (3)

χ ~H
χ− ~H

ω4

c4
= 0

here ~H is the reciprocal lattice vector for which the Bragg

condition (~k + ~H)2 = k2 is satisfied, χ ~H
is the spatially

periodic part of the susceptibility corresponding to crystal-

lographic planes with reciprocal lattice vector ~H , the po-

larization in the plane orthogonal to vectors ~k, ~H is con-

sidered for simplicity. Under the conditions of intersection

of (3) with (2) parametric x-ray radiation takes place.

The case II can be realized if one introduce oscillatory

component in the electron current. In the case of relativis-

tic electrons in the crystal, the oscillatory component can

appear if the electron goes into the channeling regime, in

this case (2) is modified to
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ω − ~k · ~v − ωif = 0, (4)

here ωif is the frequency of transition between initial and

final states of transverse channeling motion. Under the con-

ditions of intersection between (4) and (1) the channeling

radiation takes place.

SASE ESTIMATIONS FOR CHERENKOV

AND PARAMETRIC X-RAY RADIATION

The SASE effect is conditioned by action of radiated

electromagnetic field on the electrons and back action of

the induced current on the electromagnetic field. In the

frame of first order perturbation theory this process leads to

component of the beam current that is proportional to the

acting electromagnetic field, hence in terms of interaction

with electromagnetic field the presence of the beam can be

described as an active medium. Based on the Vlasov equa-

tion one can show that the induced susceptibility tensor is

χb(~k, ω) = −
4πe2

meγω2

∫

d3~pf (0)(~p)[1 + (5)

~v ⊗ ~k + ~k ⊗ ~v

ω − ~k · ~v
+ k2

~v ⊗ ~v

(ω − ~k · ~v)2
]

here f (0)(~p) is initial distribution of electron momenta in

the beam, the sign ⊗ denoted the diad (Kronecker) product.

Cherenkov radiation

In the x-ray frequency domain the susceptibilty of a crys-

tal is negative and is mainly determined by total electron

density. However, near frequencies corresponding to tran-

sitions from inner electron shells, e.g. K-edges, the corre-

sponding electronic transitions give significant contribution

to susceptility and in the harrow range the susceptibility can

become positive. Inevitably, in the same region the imag-

inary part of the susceptibility responsible for absorption

increases as well.

Consider a frequency at which the crystal susceptibility

is positive that leads to Cherenkov radiation. The analysis

of SASE possibility can be performed by means of con-

sidering the dispersion equation of electromagnetic field in

the medium and active medium described by (5). The wave

equation for electromagnetic field in such a medium reads

L(~k, ω) · ~E(~k, ω) = 0, (6)

L(~k, ω) = k2 − ~k ⊗ ~k −
ω2

c2
(1 + χ0 + χb(~k, ω))

here scalar quantities entering in L are assumed to be multi-

plied by a unit matrix. The dispersion equation is obtained

from condition DetL = 0. If one considers normal inci-

dence and solve the dispersion equation in terms of devia-

tion of the wavevector δkz from the resonance conditions

at which intersection of (1) and (2) takes place, one arrives

at

(

2
δkz
ω

− iχ′′
)

δkz
ω

2

≃
ω2
b

γω2
4χ2

0 (7)

here one has taken into account that the beam plasma fre-

quency is much smaller than x-ray frequency, beam emit-

tance was considered to be infinitely small, the exact res-

onance conditions are fulfilled, χ′′ is imaginary part of

the susceptibility. If one considers very optimistic param-

eter for the focused electron bunch current density j ∼
1010A/cm2 and neglect χ′′ in (7), for typical x-ray fre-

quency of 10keV one obtains Im δkz

ω
∼ 10−6. This value is

about 3 orders of magnitude less than imaginary part of the

susceptibility responsible for absorption, hence Cherenkov

based SASE process in x-ray domain hardly can be ex-

pected.

Parametric x-ray radiation

In the case of parametric x-ray radiation the equation

analogous to (6) takes the form

[k2 − ~k ⊗ ~k −
ω2

c2
(1 + χ0)] ~E0(~k, ω) (8)

−
ω2

c2
χ− ~H

~EH(~k, ω) =
ω2

c2
χb(~k, ω) ~E0(~k, ω)

[(~k + ~H)2 − (~k + ~H)⊗ (~k + ~H)−

ω2

c2
(1 + χ0)] ~EH(~k, ω)−

ω2

c2
χ ~H

~E0(~k, ω) = 0

here ~EH(~k, ω) corresponds to Bragg-diffracted wave. A

detailed analysis of (8), calculation of dispersion equation,

evaluation of emittance effect and analysis of SASE pro-

cess based on boundary conditions can be found in [2]. The

analysis shows that for optimized geometry of ~k,~v, ~H di-

rection, and under the most favorable conditions and value

for the bunch current j ∼ 1010A/cm2 one arrives at in-

tensity e-folding crystal thickness of about 1 mm. After

such distance in the crystal the beam would suffer drastic

multiple scattering that would degrade the induced suscep-

tibility due to the integration in (5). This would degrade the

SASE process, hence the parametric x-ray radiation SASE

scenarion has significant difficulties as well.

SASE ESTIMATIONS FOR CHANNELING

RADIATION

The process of multiple scattering can be significantly

changed if electrons of the beam are under conditions of

channeling. In this case electrons are trapped by potential

of atomic plane or atomic string, the transverse motion be-

ing described by Schrodinger equation with effective mass

γm. If one is interested in x-ray radiation wavelength in the

Angstrom range, the corresponding electron energy is be-

low 100 MeV, in this energy range the quantum description
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Figure 1: Dispersion surface under the grazing incidence conditions, magnified from left to right under. Parameters used:

electron energy 25 MeV, bunch charge 1 nC, bunch length 0.1 ps, emittence is ǫn = 0.1mm·mrad, LiH crystal, channeling

direction < 110 >, corresponding x-ray energy is 5.9 keV.

of electron channeling is essential. The action of electro-

magnetic field on channeled electrons and back within the

first order quantum mechanical perturbation theory can be

described by induced susceptibility as well as in the case I,

the corresponding expression reads:

χ(b)(~k, ω) = χb

ω~ζ ⊗ ~ζ

ω − ~k~v − ωif

, (9)

χb =
4πnee

2

ω3
(Pi − Pf )ω

2
ifm

2
if ,

~ζ = ~nc + ~v
~k~nc

ωif

, mif~nc = 〈φi|~r⊥|φf 〉

here axial channeling is assumed, ~nc is the crystallographic

direction along which channeling is taking place, |φi〉, |φf 〉
are wavefunctions of initial and final states, Pi, Pf are oc-

cupations of these states. In contrast to the case I, in order

to describe the spontaneous emission of channeling radia-

tion one has to treat the noise current of channeled particles

quantum-mechanically:

~̂j0(~k, ω) = −ie
∑

i

σ̂
(i)
− e−i~k~r

(0)
i mif × (10)

ωif
~ζδ(ω − ~k · ~v − ωif ) + h.c., σ̂− = |i〉〈f |

The electromagnetic field operators should be treated quan-

tum mechanically as well, however if we use the Heisen-

berg picture one can apply boundary conditions similar to

the classical case and use form similar to Maxwell equa-

tions to calculate observable values [3]. The electromag-

netic field in the crystal can be presented as

~̂E(~k, ω) =
∑

s

~̂Es(~k||, ω)δ(kz − k(s)z (~k||, ω)) + (11)

G(~k, ω)
4πiω

c
~̂j0(~k, ω)

here the first summand corresponds to homogeneous part of

the electromagnetic field that is described based on equa-

tion similar to (6) with susceptibility (9) instead of (5), k
(s)
z

are the solutions of the dispersion equation DetL(~k, ω) =
0 as a function of frequency ω and component of the

wavevector parallel to the crystal surface ~k||; the second

summand corresponds to inhomogeneous part of the field

due to spontaneous current, G(~k, ω) = L(~k, ω)−1 is the

Green function.

In the considered case at the intersection of (4) and (1)

that corresponds to direction given by deviation from sur-

face normal equal to θ =
√

2ωif/ω − 1/γ2 − |χ0|, the

imaginary part of the wavevector comes out to be δk =
±iω

c

√

χb

2 that under the conditions given at Fig.1 results

in gain length about 0.8 mm that is much larger than the

dechanneling length.

However, this length can become significantly smaller if

larger number of dispersion surface branches are brought

to resonance. This situation can take place if the disper-

sion surface (4) comes close to the dispersion branches cor-

responding to transmitted and reflected waves, see Fig.1.

In this case if channeling axes makes angle α =
√

|χ0|
to the sample surface and the radiation is observed at an-

gle β =
√

2ωif/ω − 1/γ2 − |χ0| one can obtain based

on the dispersion equation for deviation from resonance

that δkz = ±i
√
3
2

ω
c

(

χb

β

)
1
3

if the conditions
(

χb

β

)
1
3

∼

(Imχ0)
1
2 are fullfilled. In the case of parameters of Fig.1

one can see that the gain length decreases to a quantity

comparable with the dechanneling length. In the future

work we plan to investigate this case in more details.
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