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SYMMETRICAL PARAMETERIZATION FOR 6D FULLY COUPLED
ONE-TURN TRANSPORT MATRIX*

S. A. Glukhov, BINP, Novosibirsk, Russia

Abstract

Symmetry properties of 6D and 4D one-turn symplectic
transport matrices were studied. A new parameterization
was proposed for 6D matrix, which is an extension of the
Lebedev—Bogacz parameterization for 4D case. The pa-
rameterization is fully symmetric relative to radial, vertical
and longitudinal motion. It can be useful for lattices with
strong coupling between all degrees of freedom.

INTRODUCTION

For the case of a 2 x 2 transport matrix a well-known
Twiss parameterization exists [1]. It can be used also in the
case of 4 x 4 and 6 x 6 matrices if there is no coupling
between different degrees of freedom. The usual case is
when transversal modes are uncoupled but there is a small
interaction between either of them (or both) and longitu-
dinal one. But if longitudinal tune is much smaller than
transversal ones, then longitudinal Twiss functions are as-
sumed to be constant. So, longitudinal motion is eliminated
and taken into account only in terms of the dispersion func-
tions.

If there is an interaction between transversal modes, then
different parameterizations for coupled motion can be used
[2], [3], [4]. These parameterizations make use of the fact
that horizontal and vertical degrees of freedom are identi-
cal mathematically. But this is also the case for the longi-
tudinal one. In this paper we will derive some symmetry
properties of a 6 x 6 transport matrix and build up a totally
symmetrical parameterization for it. This parameterization
can be used for lattices with strong coupling between all
degrees of freedom. Then using the same approach we will
reduce the dimensionality to 4 x 4 and derive Lebedev—
Bogacz parameterization [4].

BASIC DEFINITIONS

Let us define a block-diagonal matrix as matrix having
non-zero elements only within its 2 x 2 diagonal blocks.
Then we introduce the following notation

10 0 1
= 1) 5= (5 o)

Let M be a 6 x 6 symplectic one-turn transport matrix,
ie. MTS¢M = Sg. Then all the eigenvalues of M can
be grouped into mutually inverse pairs [1]. Let A\; and Ag
form such a pair, v; and v, be their eigenvectors, then

Is =diag(I I I)
Se =diag(S S S) -

<> ~
Mviz=Avia, (D
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where 1\7[: M+M~1is recurrent matrix, and \ = A1+As.
This means that 1<\_>/I has at most 3 different eigenvalues,
each of them is degenerated at least twice. IM describes sta-
ble motion if and only if all |\;| = 1 [1], so A =2Re A1 2.

For any 2x 2 matrix A a pseudoinversed matrix A canbe
defined (this operation was introduced in [1] as “symplectic
conjugate”)

A = -SATS
with the following properties
A+A=(TrA)I, AA=|A]L

Now one can write down the 6 X 6 transport matrix, its
inverse and recurrent matrix in a blockwise form

M1 Mz M bI Rz Ro
M=| Mz Mz My [, M=| Rg bI Ry |,
M1 Mgz Mss ) R>; Ry b3l
My Mo Mg
M~ = | Miy My Ms |,
Miz Mas Mg

where R;, = M-« + Me—), b; = Tr M;; and |RL| = d;.
From now 0n we will assume that indices i, j € {1, 2, 3},

also % and z mean cyclic permutation of these values (e g.
1= B ).

EIGENVALUES OF RECURRENT
MATRIX
Our method for eigenvalues calculation is similar to the
one proposed in [2]. Let V be 6- component eigenvector of
M ie. ﬁv_ AV, We split V into 3 two- -component

oT
subvectors, soas v = (XT XTI XT)T. Then

a;X; + Re X + RoXe =0, )

where 0 is a zero two-component vector, a;; = b; — j\j.
Eliminating 2 of 3 X; one can obtain

ayjdy + azjds + azjds — ayjazjaz; =t 3

where t = Tr (R1R2R3).

And
As we proved earlier, each eigenvalue of M is degen-
erated at least twice, so its characteristic polynomial is a
perfect square of some P(\) with real coefficients. So, (3)
<>

can be regarded as characteristic equation of M, i.e.

PO = /| M AL = A3 — (by + b + bg) A2+

+(b1b2 + bobs + b1bs — dy — do — d3)5\+
+(b1d1 + bada + bsds — b1babs — t)
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Let us also introduce the following notation

pj=P'(\) = ()\7. - 5\;‘)0\; — ).

The 3 roots of P()) can be found using Cardano formu-
lae. Matrix M describes stable motion if and only if all of
them are real and lie inside the region (—2;2). If there are
less than 3 different roots, then spectrum of M is degener-
ated, this case will not be covered in the present paper. It is
important that in non-degenerated case p; # 0.

EIGENVECTORS OF RECURRENT
MATRIX

Let us reexamine the (2) system. It can be rewritten as 9
different equivalent equation pairs

uXo =We X, uyXe =Wo X0 (4)
i ij i (¥

where

WU <R<—R—> CLURZ‘), Uq5=

1
(a—» ae—d)
bj Dbj iJ i

J

Using (4) one can write down 3 different matrices whose

>
columns are eigenvectors of M

ule W3a WQH‘
J J

Wj: ng u271 ng
ng Wlﬂ' USﬁI
J J

The following properties of W;; and u;; can be found
directly

W, W =ue We |
ij i iJ
Wi + Wi + W3 =0,

[Wij| =us ue ,
ij i (®)]

Uit + Uj2 + U3 = Ut +ugy +us; =1, 6)

<> <> <>
then W1 + W2 + W3: 16-

One can combine u;; into 3 x 3 coupling matrix. Accord-
ing to (6), it contains 4 independent parameters and can be
parameterized with w11, w2, uss and coupling asymmetry
[, which is

I = ugp — U2z = U13 — U31 = U1 — U12 -

TWISS PARAMETERIZATION

Let W, be 3 matrices whose columns are the eigen-
vectors of M. System (1) means that eigenvector of M
corresponding to eigenvalue A is the linear combination

<

of two eigenvectors of M corresponding to eigenvalue
A = X+ X~1 hence one can find such block-diagonal ma-
trices Q; that

<> <>
W; =W; Q; =W -diag (Qlj QQ? Q?J) .
ISBN 978-3-95450-181-6

390

Proceedings of RuPAC2016, St. Petersburg, Russia

Therefore, the following matrices are also block-diagonal

<> <>
Tj =W, M W= diag (le T2;> T3<J—) @)
with |T;;| = 1. So, well-known Twiss parameterization
can be introduced for these blocks [1]

Tij =Tcosp; +Jiysinp;, Ji;= (_aélj _B(;j”) ,
ij ij

14ay;?
o pj =arg ;.

Yijg = By

®)

Note that since p; are fixed, then 3;; can be negative for
i # j. Diagonal blocks of Q; can be expressed as

Q= (‘51']' Bij )
Y m Olij—I —Oéij—I ’

where [ is imaginary unit.

From (7) and (8) the following commutation rules can be
obtained

WiJe =J- W, 9
1] 1]
Then a closed expression for M can be found
<> <> <>
M =W; Ti+ W2 To+ W3 T3. (10)

Using (5), all W,; can be expressed in terms of Wy,
Wya, W33 and u;; in 2 different ways

W « = U—M—WJ] W<—<—W—>—>

JjJj JJ j J g J , (]1)
ZW - = 7UH%WJJ + W<—<—W~>~>
Jji JjJ JjJ
or
TJWF—J%FA +A J<—<—
33 JjJ
JjJ jJ 3
AJ - W”JH S JLWy,
JJ 37
B, = WjJoo —J oW,
37

Knowing |[W;;| from (5), one can obtain the following
expressions from (9)

W,; =1;;(Icos ¢, +J~ smqb])(J—y +J-)

) 1]

U~ Us—
’L] 1]

2- T (- I )

©J 1]

®; can be expressed as follows

figi —figi (1 1
. arctan 223 7397 T4z
¢; = arc anhjfj’-—h;-fj+<2 2>7r,

where 7;; =

13)
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where

|C/I‘— SU——U+—+— —|D/I|— U= —U+——
jJ 3 ji Ji
|CI|—T U— U<+ gj_‘D/|—T U—>—>Uc—
jJi J3J jJi 33

hj =Tr (C,CY) h’ =Tr (D,DY)
C J—H—A/ +A/J<—<— J—>—>B/ —|—B J<——>
C” JiiA” A”JJHF D” JLB" B/

J

JjJ J JjJ
A/ —Tjj((.]ﬂ +J;‘)J<—~>—JH~>(J~> +J<—))
Jij J
A = 0 5 S D30 o0 )

Jj JJ idi di
7 ii’ i3 ii Ji Jj

B’ :’I"j](( 4Je —I)Jee —JHH(JA N P —I))
J iji Jj JJ i di Ji

There are 3 possible ways of resolving ambiguity in (13).
Firstly, ¢; can be introduced into parameterization as addi-
tional dependent parameters. Secondly, one can use 3 ad-
ditional boolean parameters to indicate “+” or “—" in ¢;.
And other way is to invert signs of §;;, o and p , if ¢;
has “+”, then change it to “—"

Finally, resulting parameterlzation has 25 parameters:
3 15, 9 a5, 9 Bij, 3 uj; and coupling asymmetry [. 21
of them are independent, and there are 4 identities which
can be obtained from (11) and (12)

Tr(WjJ o e Wyd o = WJe o W00 ) =
JJ JJ JJ J 7
= Tj (UAM—’UA—F — ’U/~>~>U<—4>)
4Ty (W11W22W33) = —127(1 + S)+
+(1 — S+ 2u11)(1 — s+ QUQQ)(l — S+ QU33) s

where s = uq1+u22+uss.

4D CASE

This case can be deduced from 6D case with M3, =
M3 = M3, = Mz = 0. The only nonzero W;; are
W3, = —Wj31 = W, and all u;; depend on one parameter
u: Ul = Ugg = 1 — u, ujo2 = uop = u. Then
WJ21 :JHW, WJ22 =J12W, |W| :u(l —u).

(14)
If uw # {0;1}, then this system can be solved only in the

case of Tr (J11J12 — J21J22) = 0. So, the following iden-
tity can be derived

Brivi2+Prav11 —2a11002 = Baiyee +Bazya1 —2a1 a2z -
(15)
Solution of (14) is the following

W = k(-]ll (J12 —J22) +

where

(J12 - J22) J21) )

u(l —u)
[J11 (J12 — Jo2) + (J12 — Ja2) Jo1|

If of £k < O then its sign should be changed along
with simultaneous inversion of signs of {J11,J21, 1} or
{J12,J22, 2} to resolve ambiguity.

The parameter set for 4D case is also redundant and has
11 items: 2 pj, 4 ij, 4 Bi; and u. Only 10 of them are
independent because of identity (15).
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RELATION TO LEBEDEV—BOGACZ
PARAMETERIZATION

One can easily set up a correspondence between nota-
tions used in Lebedev—Bogacz parameterization [4] (left)
and in the parameterization described above (right)

pir = pi1 - sgn By Har = ph - sgn fao
Brz = [(1 — u)Bui| Bry = |ufa1]
Bz = |uBiz] Bay = [(1 — u) B2
a1y = (1 —u)aqr -sgn ((1 — u)B1) ,
Q2 = uaiy - sgn (ufiz)
Q1y = UQ21 - SgN (Uﬁm)
azy = (1 —u)azs - sgn ((1 — u)Ba2)
the “L” index of p;; and por is introduced to empha-
size possible sign change. There are two main differences.
Firstly, in [4] a;; and 3;; depend on w, and u is depen-
dent parameter, which, in turn, can be expressed through
a;; and 3;;. In the present paper ay;; and j3;; are indepen-
dent on u, but there is identity (15). Secondly, in [4] all 3;;
are positive, but there are 2 additional boolean parameters.
In this paper these ambiguities are resolved by lifting the
restriction of 3;; > 0.

SECOND-MOMENTS MATRIX AND
EMITTANCES

If ¥ is the second-moments matrix, then ¥ = MYXMT.
Using the following notation

DI

ij — dlag (Elj 27 23}—) s iij = —EjJijS7

one obtains closed expression for 3
d ~ d ~ > ~
Y =W; ¥+ W2 Yo+ W3 X3

Here ¢; are emittances of normal modes, one can calculate
them from beam sizes
-1

€1 uiiBir ui2Bi2 uizfis o1

€2 | = | u21for u22Ba2  u23fa3 o2

€3 uz1f31  us2B32  us3fs3 03
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