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Abstract

Symmetry properties of 6D and 4D one-turn symplectic

transport matrices were studied. A new parameterization

was proposed for 6D matrix, which is an extension of the

Lebedev—Bogacz parameterization for 4D case. The pa-

rameterization is fully symmetric relative to radial, vertical

and longitudinal motion. It can be useful for lattices with

strong coupling between all degrees of freedom.

INTRODUCTION

For the case of a 2 × 2 transport matrix a well-known

Twiss parameterization exists [1]. It can be used also in the

case of 4 × 4 and 6 × 6 matrices if there is no coupling

between different degrees of freedom. The usual case is

when transversal modes are uncoupled but there is a small

interaction between either of them (or both) and longitu-

dinal one. But if longitudinal tune is much smaller than

transversal ones, then longitudinal Twiss functions are as-

sumed to be constant. So, longitudinal motion is eliminated

and taken into account only in terms of the dispersion func-

tions.

If there is an interaction between transversal modes, then

different parameterizations for coupled motion can be used

[2], [3], [4]. These parameterizations make use of the fact

that horizontal and vertical degrees of freedom are identi-

cal mathematically. But this is also the case for the longi-

tudinal one. In this paper we will derive some symmetry

properties of a 6× 6 transport matrix and build up a totally

symmetrical parameterization for it. This parameterization

can be used for lattices with strong coupling between all

degrees of freedom. Then using the same approach we will

reduce the dimensionality to 4 × 4 and derive Lebedev—

Bogacz parameterization [4].

BASIC DEFINITIONS

Let us define a block-diagonal matrix as matrix having

non-zero elements only within its 2 × 2 diagonal blocks.

Then we introduce the following notation

I =

(

1 0
0 1

)

, S =

(

0 1
−1 0

)

,
I6 = diag ( I I I )
S6 = diag (S S S )

.

Let M be a 6 × 6 symplectic one-turn transport matrix,

i.e. MTS6M = S6. Then all the eigenvalues of M can

be grouped into mutually inverse pairs [1]. Let λ1 and λ2

form such a pair, v1 and v2 be their eigenvectors, then

↔

M v1,2 = λ̂v1,2 , (1)

∗This work has been supported by Russian Science Foundation (pro-
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where
↔

M= M+M−1 is recurrent matrix, and λ̂ = λ1+λ2.

This means that
↔

M has at most 3 different eigenvalues,

each of them is degenerated at least twice. M describes sta-

ble motion if and only if all |λj | = 1 [1], so λ̂ = 2Reλ1,2.

For any 2×2 matrix A a pseudoinversed matrix Â can be

defined (this operation was introduced in [1] as “symplectic

conjugate”)

Â = −SATS

with the following properties

A+ Â = (TrA)I , AÂ = |A|I .

Now one can write down the 6 × 6 transport matrix, its

inverse and recurrent matrix in a blockwise form

M =





M11 M12 M13

M21 M22 M23

M31 M32 M33



,
↔

M=





b1I R3 R̂2

R̂3 b2I R1

R2 R̂1 b3I



,

M−1 =





M̂11 M̂21 M̂31

M̂12 M̂22 M̂32

M̂13 M̂23 M̂33



,

where Ri = M→

i
←

i
+ M̂←

i
→

i
, bi = TrMii and |Ri| = di.

From now on we will assume that indices i, j ∈ {1, 2, 3},

also
←

i and
→

i mean cyclic permutation of these values (e.g.

1 =
←−
2 =

−→
3 ).

EIGENVALUES OF RECURRENT

MATRIX

Our method for eigenvalues calculation is similar to the

one proposed in [2]. Let
↔

v be 6-component eigenvector of
↔

M, i.e.
↔

M
↔

v= λ̂
↔

v . We split
↔

v into 3 two-component

subvectors, so as
↔

v
T
= (XT

1 XT
2 XT

3 )
T

. Then

aijXi +R←
i
X→

i
+ R̂→

i
X←

i
= 0̄ , (2)

where 0̄ is a zero two-component vector, aij = bi − λ̂j .

Eliminating 2 of 3 Xi one can obtain

a1jd1 + a2jd2 + a3jd3 − a1ja2ja3j = t , (3)

where t = Tr (R1R2R3).

As we proved earlier, each eigenvalue of
↔

M is degen-

erated at least twice, so its characteristic polynomial is a

perfect square of some P̂ (λ̂) with real coefficients. So, (3)

can be regarded as characteristic equation of
↔

M, i.e.

P̂ (λ̂) =

√

|
↔

M −λ̂I| = λ̂3 − (b1 + b2 + b3)λ̂
2+

+(b1b2 + b2b3 + b1b3 − d1 − d2 − d3)λ̂+
+(b1d1 + b2d2 + b3d3 − b1b2b3 − t)
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Let us also introduce the following notation

pj = P̂ ′(λ̂j) = (λ̂→
j
− λ̂j)(λ̂←

j
− λ̂j) .

The 3 roots of P̂ (λ̂) can be found using Cardano formu-

lae. Matrix M describes stable motion if and only if all of

them are real and lie inside the region (−2; 2). If there are

less than 3 different roots, then spectrum of M is degener-

ated, this case will not be covered in the present paper. It is

important that in non-degenerated case pj 6= 0.

EIGENVECTORS OF RECURRENT

MATRIX

Let us reexamine the (2) system. It can be rewritten as 9

different equivalent equation pairs

uijX→
i
= Ŵ←

i j
Xi , uijX←

i
= W→

i j
Xi , (4)

where

Wij=
1

pj

(

R̂←
i
R̂→

i
−aijRi

)

, uij=
1

pj

(

a→
i j
a←

i j
−di

)

.

Using (4) one can write down 3 different matrices whose

columns are eigenvectors of
↔

M

↔

Wj=









u1jI W
3
→

j
Ŵ

2
←

j

Ŵ3j u
2
→

j
I W

1
←

j

W2j Ŵ
1
→

j
u
3
←

j
I









.

The following properties of Wij and uij can be found

directly

WijW→

i j
= u←

i j
Ŵ←

i j
, |Wij | = u→

i j
u←

i j
,

Wi1 +Wi2 +Wi3 = 0,
(5)

ui1 + ui2 + ui3 = u1j + u2j + u3j = 1 , (6)

then
↔

W1 +
↔

W2 +
↔

W3= I6.

One can combine uij into 3×3 coupling matrix. Accord-

ing to (6), it contains 4 independent parameters and can be

parameterized with u11, u22, u33 and coupling asymmetry

l, which is

l = u32 − u23 = u13 − u31 = u21 − u12 .

TWISS PARAMETERIZATION

Let Wj be 3 matrices whose columns are the eigen-

vectors of M. System (1) means that eigenvector of M

corresponding to eigenvalue λ is the linear combination

of two eigenvectors of
↔

M corresponding to eigenvalue

λ̂ = λ+ λ−1, hence one can find such block-diagonal ma-

trices Qj that

Wj =
↔

Wj Qj =
↔

Wj ·diag
(

Q1j Q
2
→

j
Q

3
←

j

)

.

Therefore, the following matrices are also block-diagonal

Tj =
↔

Wj
−1M

↔

Wj= diag
(

T1j T
2
→

j
T

3
←

j

)

(7)

with |Tij | = 1. So, well-known Twiss parameterization

can be introduced for these blocks [1]

Tij = I cosµj + Jij sinµj , Jij =

(

αij βij

−γij −αij

)

,

γij =
1+αij

2

βij
, µj = arg λj .

(8)

Note that since µj are fixed, then βij can be negative for

i 6= j. Diagonal blocks of Qj can be expressed as

Qij =
1

√

2βij

(

−βij βij

αij − I −αij − I

)

,

where I is imaginary unit.

From (7) and (8) the following commutation rules can be

obtained

WijJ←
i j

= J→
i j
Wij . (9)

Then a closed expression for M can be found

M =
↔

W1 T1+
↔

W2 T2+
↔

W3 T3 . (10)

Using (5), all Wij can be expressed in terms of W11,

W22, W33 and uij in 2 different ways

lW
j
←

j
= u→

j
←

j
Wjj − Ŵ←

j
←

j
Ŵ→

j
→

j

lW
j
→

j
= −u←

j
→

j
Wjj + Ŵ←

j
←

j
Ŵ→

j
→

j

, (11)

or

τjW
j
←

j
= J→

j
←

j
Aj +AjJ←

j
←

j

τjW
j
→

j
= J→

j
→

j
Bj +BjJ←

j
→

j

τj = Tr (J→
j
→

j
J→

j
←

j
− J←

j
→

j
J←

j
←

j
)

Aj = WjjJ←
j
→

j
− J→

j
→

j
Wjj

Bj = WjjJ←
j
←

j
− J→

j
←

j
Wjj

. (12)

Knowing |Wij | from (5), one can obtain the following

expressions from (9)

Wij = rij(I cosφj + J→
i j

sinφj)(J→
i j

+ J←
i j
)

where rij =

√

√

√

√

u→
i j
u←

i j

2− Tr (J→
i j
J←

i j
)

.

φj can be expressed as follows

φj = arctan
fjg
′

j − f ′jgj

hjf
′

j − h′jfj
+

(

1

2
±

1

2

)

π , (13)
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where

fj= |C
′′

j |−τ
2
j u→

j
←

j
u←

j
←

j

gj= |C
′

j |−τ
2
j u→

j
←

j
u←

j
←

j

hj=Tr (C′jĈ
′′

j )
C′j=J→

j
←

j
A′j+A′jJ←

j
←

j

C′′j=J→
j
←

j
A′′j +A′′j J←

j
←

j

f ′j= |D
′′

j |−τ
2
j u→

j
→

j
u←

j
→

j

g′j= |D
′

j |−τ
2
j u→

j
→

j
u←

j
→

j

h′j=Tr (D′jD̂
′′

j )
D′j=J→

j
→

j
B′j+B′jJ←

j
→

j

D′′j=J→
j
→

j
B′′j +B′′j J←

j
→

j

A′j = rjj((J→
j j

+ J←
j j
)J←

j
→

j
− J→

j
→

j
(J→

j j
+ J←

j j
))

A′′j = rjj((J→
j j
J←

j j
− I)J←

j
→

j
− J→

j
→

j
(J→

j j
J←

j j
− I))

B′j = rjj((J→
j j

+ J←
j j
)J←

j
←

j
− J→

j
←

j
(J→

j j
+ J←

j j
))

B′′j = rjj((J→
j j
J←

j j
− I)J←

j
←

j
− J→

j
←

j
(J→

j j
J←

j j
− I)).

There are 3 possible ways of resolving ambiguity in (13).

Firstly, φj can be introduced into parameterization as addi-

tional dependent parameters. Secondly, one can use 3 ad-

ditional boolean parameters to indicate “+” or “−” in φj .

And other way is to invert signs of βij , αij and µj , if φj

has “+”, then change it to “−”.

Finally, resulting parameterization has 25 parameters:

3 µj , 9 αij , 9 βij , 3 ujj and coupling asymmetry l. 21

of them are independent, and there are 4 identities which

can be obtained from (11) and (12)

Tr (WjjJ←
j
←

j
ŴjjJ→

j
→

j
−WjjJ←

j
→

j
ŴjjJ→

j
←

j
) =

= τj(u→
j
←

j
u←

j
←

j
− u→

j
→

j
u←

j
→

j
)

4Tr (W11W22W33) = −l
2(1 + s)+

+(1− s+ 2u11)(1− s+ 2u22)(1− s+ 2u33) ,

where s = u11+u22+u33.

4D CASE

This case can be deduced from 6D case with M31 =
M13 = M32 = M23 = 0. The only nonzero Wij are

W32 = −W31 = W, and all uij depend on one parameter

u: u11 = u22 = 1− u, u12 = u21 = u. Then

WJ21 = J11W, WJ22 = J12W, |W| = u(1− u).
(14)

If u 6= {0; 1}, then this system can be solved only in the

case of Tr (J11J12− J21J22) = 0. So, the following iden-

tity can be derived

β11γ12+β12γ11−2α11α12 = β21γ22+β22γ21−2α21α22 .

(15)

Solution of (14) is the following

W = k (J11 (J12 − J22) + (J12 − J22)J21) ,

where

k = ±

√

u(1− u)

|J11 (J12 − J22) + (J12 − J22)J21|
.

If of k < 0 then its sign should be changed along

with simultaneous inversion of signs of {J11,J21, µ1} or

{J12,J22, µ2} to resolve ambiguity.

The parameter set for 4D case is also redundant and has

11 items: 2 µj , 4 αij , 4 βij and u. Only 10 of them are

independent because of identity (15).

RELATION TO LEBEDEV—BOGACZ

PARAMETERIZATION

One can easily set up a correspondence between nota-

tions used in Lebedev—Bogacz parameterization [4] (left)

and in the parameterization described above (right)

µ1L = µ1 · sgnβ11

β1x = |(1− u)β11|
β2x = |uβ12|

µ2L = µ2 · sgnβ22

β1y = |uβ21|
β2y = |(1− u)β22|

α1x = (1− u)α11 · sgn ((1− u)β11)
α2x = uα12 · sgn (uβ12)
α1y = uα21 · sgn (uβ21)
α2y = (1− u)α22 · sgn ((1− u)β22)

,

the “L” index of µ1L and µ2L is introduced to empha-

size possible sign change. There are two main differences.

Firstly, in [4] αij and βij depend on u, and u is depen-

dent parameter, which, in turn, can be expressed through

αij and βij . In the present paper αij and βij are indepen-

dent on u, but there is identity (15). Secondly, in [4] all βij

are positive, but there are 2 additional boolean parameters.

In this paper these ambiguities are resolved by lifting the

restriction of βij > 0.

SECOND-MOMENTS MATRIX AND

EMITTANCES

If Σ is the second-moments matrix, then Σ = MΣMT .

Using the following notation

Σ̃j = diag
(

Σ̃1j Σ̃
2
→

j
Σ̃

3
←

j

)

, Σ̃ij = −εjJijS ,

one obtains closed expression for Σ

Σ =
↔

W1 Σ̃1+
↔

W2 Σ̃2+
↔

W3 Σ̃3 .

Here εj are emittances of normal modes, one can calculate

them from beam sizes




ε1
ε2
ε3



 =





u11β11 u12β12 u13β13

u21β21 u22β22 u23β23

u31β31 u32β32 u33β33





−1 



σ1

σ2

σ3



 .
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