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Abstract

Terahertz radiation is considered as a promising tool for

a number of applications. One of the possible ways to emit

THz waves is to pass short electron bunch through a waveg-

uide structure loaded with dielectric [1]. Previously we

considered the extraction of radiation from the open end

of the waveguide with dielectric loading in both approxi-

mate and rigorous formulation [2]. We also developed a

rigorous approach based on mode-matching technique and

modified residue-calculus technique for the case when the

waveguide with dielectric is co-axial with infinite waveg-

uide with greater radius [3]. The study presented here is

devoted to the case when the waveguide with open end

has a flange and enclosed into another waveguide with a

greater radius. The case of the flanged waveguide in the

unbounded vacuum space can be described as the limiting

case of the problem under consideration. We perform ana-

lytical calculation (based on mode-matching technique and

modified residue-calculus technique) for the case of vac-

uum waveguide with a flange (dielectric with very high

permittivity instead of flange is also considered), direct nu-

merical simulation for this case and compare results. The

case of inner waveguide with flange and dielectric filling is

investigated numerically.

ANALYTICAL RESULTS

In this report, we consider 3 problems (Fig. 1). In prob-

lem (a), a semi-infinite ideally conducting (σ = ∞) cylin-

drical waveguide with radius b enclosed into a concentric

infinite waveguide with radius a > b. Coaxial domain (2) is

filled with a homogeneous dielectric (ε0 > 1). In problem

(b), coaxial part is terminated by ideally conducting flange.

Problem (c) differs from (b) by filling the inner waveguide

with dielectric (ε > 1). All structures are excited by a sin-

gle TM0l mode propagating from the inner waveguide. Be-

low we present rigorous theory for the problem (a), which

can be easily modified for problem (b). Problem (c) is in-

vestigated numerically. Incident field in cylindrical frame

ρ, φ, z is

H
(i)
ωφ = J1(ρj0l/b)e

−γ
(1)
zl

z, (1)

where J0(j0l) = 0, γ
(1)
zl =

√

j20lb
−2 − k20 , Reγ

(1)
zl > 0,

k0 = ω/c. The reflected field in the domain (1) is

H
(1)
ωφ=

∑∞

m=1
BmJ0(ρj0m/b)eγ

(1)
zm

z. (2)
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Figure 1: Geometry of the problems.

Fields generated in domains (2) and (3) are:

H
(3)
ωφ=

∑∞

m=1
AmJ0(ρj0m/a)e−γ(3)

zm
z, (3)

H
(2)
ωφ=C0ρ

−1eκ
(2)
z0 z+

∑∞

m=1
CmZm(ρχm)eκ

(2)
zm

z, (4)

where γ
(3)
zm =

√

j20ma−2 − k20 , κ
(2)
z0 = −ik0

√
ε0, κ

(2)
zm =

√

χ2
m − k20ε0, Reγ

(3)
zm > 0, Reκ

(2)
zm > 0,

Zm(ξ) = J1(ξ)−N1(ξ)J0(aχm)N−1
0 (aχm), (5)

χm is solution of dispersion relation for domain (2),

J0(bχm)N0(aχm)− J0(aχm)N0(bχm) = 0. (6)

Performing matching of Hωφ and Eωρ =
c(iωε)−1∂Hωφ/∂z for z = 0, and integrating sepa-

rately over 0 < ρ < b and b < ρ < a with eigenfunction

of domains (1) and (2) correspondingly, we can obtain the

following infinite systems for unknown coefficients:

∞
∑

m=1

(

Ãm

γ
(3)
zm − γ

(2)
zn

+
Ãmqn

γ
(3)
zm + γ

(2)
zn

)

= 0, (7)

∞
∑

m=1

(

Ãmqn

γ
(3)
zm−γ

(2)
zn

+
Ãm

γ
(3)
zm+γ

(2)
zn

)

=
−4C̃nγ

(2)
zn κ

(2)
zn

κ
(2)
zn+ε0γ

(1)
zn

, (8)

∞
∑

m=1

Ãm

γ
(3)
zm − γ

(1)
zp

= −δlpbJ1(j0p)γ
(1)
zl , (9)
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∞
∑

m=1

Ãm

γ
(3)
zm + γ

(1)
zp

= 2B̃pγ
(1)
zp , (10)

γ
(2)
z0 =− ik0, γ

(2)
zp =

√

χ2
m−k20 , p = 1, 2, ..., n = 0, 1, ...,

qp =
(

ε0γ
(2)
zp − κ(2)

zp

)(

ε0γ
(2)
zp + κ(2)

zp

)−1

, (11)

Ãm

Am
= J0

(

bj0m
a

)

j0m
a

,
B̃p

Bp
=

bJ1(j0p)

2
, (12)

C̃0

C0
= ln

(a

b

)

,
C̃n

Cn
=

a2

2b

Z2
n(aχn)

Zn(bχn)
− b

2
Zn(bχn). (13)

According to the residue-calculus technique [3, 4], in or-

der to solve systems (7)–(9) one should construct the func-

tion f(w) which satisfies the following conditions: (i)

f(w) is regular in complex plane w excluding first-order

poles w = γ
(3)
zp ; (ii) has first-order zeros for w = γ

(1)
zp

excluding p = l; (iii) f(w) −−−−−→
|w|→∞

w−(τ0+1/2) with

sin(πτ0) = (ε0 − 1)/(2ε0 + 2); (iv) f(w) satisfies the

relation f(γ
(2)
zn ) + qpf(−γ

(2)
zn ) = 0 (v) and normalized

so that f(γ
(1)
zl ) = bJ1(j0p)γ

(1)
zl . Asymptotic (iii) follows

from Meixner’s edge condition for ρ = b, z → +0. It

follows from (iii) and (iv) that f(w) has first-order zeros

Γ
(2)
n = γ

(2)
zn + π/d∆

(2)
n shifted with respect to γ

(2)
zn . Con-

sidering integrals over circle C∞ with infinite radius

∮

C∞

f(w)

w−γ
(1)
zp

dw=

∮

C∞

(

f(w)

w − γ
(2)
zn

+
qnf(w)

w + γ
(2)
zn

)

dw=0, (14)

∮

C∞

f(w)

w + γ
(1)
zp

dw=

∮

C∞

(

qnf(w)

w − γ
(2)
zn

+
f(w)

w + γ
(2)
zn

)

dw=0, (15)

we obtain Ãp = Res f(γ
(3)
zp ), B̃n = −f(−γ

(1)
zp )(2γ

(1)
zp )−1,

C̃n =

(

qnf(γ
(2)
zn ) + f(−γ

(2)
zn )
)

4γ
(2)
zn κ

(2)
zn

(

ε0γ
(2)
zn + κ(2)

zn

)

. (16)

Function f(w) can be constructed in the form

f=P0

(

w−Γ
(2)
0

)∞
∏

n=1

(

1− w

Γ
(2)
n

)

∞
∏

m=1

(

1− w

γ
(3)
zm

)

∞
∏

s=1,
s ̸=l

(

1− w

γ
(1)
zs

)

G(w), (17)

G(w) = exp

[

−w

π

(

b ln

(

b

d

)

+ a ln

(

d

a

))]

, (18)

where d = a − b and P0 is chosen so that (v) is ful-

filled. Condition (iii) dictates that ∆
(2)
n −−−−→

n→∞
πτ0/d.

Values ∆
(2)
n are obtained from (iv) using iteration process

(see [4, 3, 5] for details).

In order to obtain solution for the problem (b), one

should put qn = 1 in the condition (iv) and find the shifted

zeros again. In this case Cn = 0, and other coefficients are

determined by the same formulas.

NUMERICAL CALCULATIONS AND

DISCUSSION

Direct numerical simulations (using Comsol Multi-

physics package) were performed in order to verify devel-

oped analytical algorithm. Moreover, in numerical simula-

tions we consider dielectric loaded waveguides as well.

For each simulation the 3D model consists of two cylin-

drical “tubes” with different radii, which are connected

with a flange. The length of each part is set to be ten times

greater than the wavelength in the filling medium (dielec-

tric or vacuum). The incident mode is launched and re-

flected/transmitted modes are received at the outer edge of

each waveguide piece. Desired eigenmodes are calculated

using pre-defined out-of-plane wave numbers.

Table 1: Comparison of the fractions of the transmitted Wt

and reflected Wr power for the problem (b). Incident mode

is TM01, ω = 2π · 80 GHz, b = 2.4 mm.

Outer Comsol Analytic Comsol Analytic

radius a Wt Wt Wr Wr

4.8 mm 93.0% 93.0% 7.0% 7.0%
9.6 mm 99.2% 99.2% 0.8% 0.8%
19.2 mm 96.8% 98.4% 3.2% 1.6%

Firstly, we compare numerical (Comsol) and analytical

results for the problem (b). In the Table 1, we compare

the ratios of the transmitted/reflected power to the power

of the incident field for the launched TM01 mode with fre-

quency 80 GHz and for different outer waveguide radius

(small waveguide radius is b=2.4mm). Small waveguide

has single propagating mode, while the larger waveguide

can possess up to ten propagating modes depending on a.

As one can see, results of both methods are in a good agree-

ment. In addition, top plot of Fig. 2 represents distribu-

tion of the electric field absolute value for the case where

a=2b=4.8mm.

Table 2: Comparison of the fractions of power transmitted

into coaxial area (2) W
(2)
t , into vacuum area (3) W

(3)
t and

reflected power Wr for the problem (a) with ε0 = 5000.

Incident mode is TM01, ω=2π · 80 GHz, b=2.4 mm.

a W
(2)
t W

(3)
t Wr Balance

4.8 mm 1.4% 91.6% 7.0% 100.0%
9.6 mm 1.0% 98.1% 0.9% 100.0%
19.2 mm 2.0% 96.8% 1.7% 100.5%

We also briefly discuss numerical results for the prob-

lem (a). It seems that for ε0 → ∞ problem (a) transforms

to problem (b). Strictly speaking, this is generally not the

case due to certain difference in field behavior near the edge

ρ = b, z → +0 (see [4] for details). Moreover, based

on the above formulas, we have developed numerical algo-

rithm which allows calculating mode structure for arbitrary

ε0 including very large values.
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Figure 2: Distribution of the electric field absolute value for the case of the mode launching from the empty waveguide

(top) and dielectric loaded waveguide (bottom), both with flanges. Structure parameters: b = 2.4 cm, a = 2b (top),

a = 8b, ε = 10 (bottom). Incident mode is TM01, distances are in mm, electric field is in V/m.

Table 2 shows transmitted and reflected powers for the

case (a) with ε0 = 5000. Reflected power is close to that in

problem (b), but power transmitted into area (3) is slightly

smaller because 1−2% of power goes in the coaxial waveg-

uide despite of very high permittivity.

In numerical simulations, we also analyzed flanged

waveguide with dielectric loading (problem (c)). As an ex-

ample we consider material with permittivity ε = 10. At

frequency ω = 2π · 37 GHz the dielectric waveguide has

two propagating modes for b = 2.4 mm. In Table 3 com-

parison of the percentages of the reflected and transmitted

power is given for different numbers of launching mode

and radii a. As one can see, at a higher number of launching

mode, the output power sufficiently decreases. The same

situations was observed for the case of flange absence [3].

An illustration of the electric field distribution inside con-

sidered structure is given in Fig. 2, bottom row. We can see

a strong evanescent field excitation near the conjunction,

but the total output power is only 11% from the power of

the launched mode.

CONCLUSION

We have developed rigorous theory for describing mode

transformation at the discontinuity of cylindrical waveg-

uide with dielectric layer and ideally conducting flange.

For the case of vacuum flange, analytical results were in

very good agreement with direct simulation using Comsol

package. Moreover, analytical approach allows considera-

tion of cases with very high permittivity (several thousands

and larger). Using simulations, the case with flange and

smaller radius waveguide filled with dielectric was also in-

vestigated. Compared to the case without flange, transmit-

Table 3: Comparison of the fractions of the transmitted

Wt and reflected Wr power depending on a and launch-

ing mode for problem (c); ω = 2π · 37 GHz, b = 2.4 mm,

ε = 10.

Outer Launching Reflected Transmitted

radius a mode power Wr power Wt

4.8 mm TM01 82.9% 17.1%
9.6 mm TM01 85.1% 14.9%
19.2 mm TM01 89.1% 10.9%
4.8 mm TM02 99.8% 0.2%
9.6 mm TM02 99.9% 0.1%
19.2 mm TM02 99.9% 0.1%

ted power is larger.
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