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Abstract 
Distribution function for scattering angle and transverse 

displacement is used to derive the phase-plane portrait 
transformation in scattering medium for incoming 
charged particle beam. The phase-plane portrait of 
scattered beam depends strongly on incoming beam 
ellipse proportions and orientation, and simple matching 
conditions and expression has been derived. It is shown as 
well that in heterogeneous medium incident beam 
experiences trajectory refraction and reflection at the out 
coming medium border. Reflection criterion had been 
derived. This feature of scattering media may be used for 
beam control in accelerator based application. 

INTRODUCTION 
Metallic foil and dielectric films on charged particle 

beam path are quit natural elements of accelerators, 
storage rings and beam lines. These used for example for 
vacuum volumes separation, may serve as beam targets 
for various functions, as extraction window. Together 
with desired functionality, beam emittance growth is 
usually undesired consequent of beam-target interaction.  
For some application detail beam characteristic after its 
interaction with target are quit necessary. For example, 
this is truе in the case when extracted beam is directed to 
experiment area and has to be matched with beam line 
optics. Another example is a target in tagged photons 
experiment in ecologically clean energy recovery 
accelerator [1]. Here electrons directed to accelerator after 
target and precise tuning of scattered beam is necessary to 
avoid particle losses. Charge exchanged injection into ion 
accelerator or storage ring is accompanied by multiple 
interaction of stored bunches with stripping target and 
bunch phase portrait evolution is desired for adequate 
storage process description. 

Multiple Coulomb scattering of moving charges is the 
main process in media that results in emittance growth. 
We use classical distribution function for charged particle 
being scattered in media to explore particle dynamics, 
phase space concept being used. The concept of beam 
matching with scattering media is introduced and formula 
for beam emittance growth for matched beam has been 
derived. Distribution function for scattering in 
homogeneous infinite media is used to explore off normal 
incidence of a charge on a scattering plate. Formula 
connecting critical angle and media and particle 
parameters for the reflection phenomena is derived.  

PHASE PORTRAIT OF SCATTERED 
BEAM 

Let us imaging needle-shaped charged particle beam 
that moves in x direction and traverses a plate (target) 
from homogeneous material, placed perpendicular to x 
axis.  Beam particles interact with target nuclei and 

change there impulses. We neglect energy lost and 
concentrating ourselves on transverse motion. One may 
consider particle motion the same for any transverse 
coordinate for homogeneous infinite scattering media. In 
such assumptions a probability to find a charge at depth x 
with any transverse coordinate y moving at angle 
θ relative direction of motion of incident needle-shaped 
beam in plane (x,y) is described by the formula [2,3] 
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Here sΘ   is physical quantity integrating scattering 
media and moving charge properties: 
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where cp,,β are relative particle velocity cv /=β , 
particle impulse and light velocity respectively, v  is 
particle velocity, 0X  - radiation length, 0E  is the 
constant with energy dimension: 
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Here 137/1/2 == ce α - is fine structure constant, 

eme,  are electron charge and its mass respectively,   is 
Planck constant. 

According to relation (1) scattered beam is described 
by Gaussian low in coordinate system θ;/ xy . The lines 
of equal probabilities are similar ellipses tilted at angle  

6208.1 ≅≈ degrees to axis xy /=η . The tilted ellipse 
reflects  those evident fact that transverse displacement of 
scattered particle and its direction of motion are not 
statistically independent. The relative number of particles 
enveloped by ellipse  

constF ==+− 22 33 θηθη                   (4) 
depends on F value. Its average value is 
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Let us call the ellipse of equal probability (4) with 
FF = by “elementary scattering ellipse” while the area 

sε enveloped by this ellipse by “elementary scattering 
emittance”. Taking into account that ellipse area 
described by equation (4) (emittance normalized by target 
thickness) is equal to 3/2 FS π=  we arrive at relation 

22

32
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πε                              (6) 

One has to keep in mind that the emittance defined over 
average value encloses definite part of scattered particle 
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and perhaps multiple of this value describes scattered 
beam more precisely. 
Let us derive distribution function for a particle entering 
scattering media at an angle Θ  and transverse position 
Y . Choosing new coordinate system with the origin at 
point )0,(Y turned around old one at angle Θ , we find 
that new and old particle coordinates are related as 

Θ−+Θ=′ sin)(cos Yyhx Θ−+Θ−=′ cos)(sin Yyhy   (7) 
That gives for small angles 

Θ−+=′ )( Yyhx , )( Yyhy −+Θ−=′ , Θ−=′ θθ    (8) 
where h is target thickness. Thus we arrive at relation 
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Neglecting the term hYy <<Θ− )(  that is valid for 
beam with small divergence we find that to any element 

Θ,Y  corresponds the same elementary scattering ellipse 
located at point ΘΘ+ ,hY  of phase space. 

MATCHING OF CHARGE PARTICLE 
BEAM WITH SCATTERING MEDIUM 

Envelope to family of elementary scattering ellipses with 
the centers on ellipse  

1)()( 22 FCHBHA =Θ+ΘΘ+Θ ,            (10) 
form the border of the beam phase portrait after its 
scattering on a target. Here  

122 FCBHAH =Θ+Θ+                       (11) 
is the border of phase portrait of incident beam in 
normalized phase variables hYHhy /),/( == θη . The 
area between the border (10) and the envelope is increase 
of emittance of incident beam and can be calculated. To 
do this let us subject ),( θη  plane to compression in 
direction of large elementary scattering ellipse axis up to 
value when ellipse becomes circle.  Area element of 
compressed area to be calculated is equal 

αdrrdldS 2
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where αddl,  are the differentials of compressed ellipse 
(10) arc and the angle of the perpendicular to this ellipse 
border, r  is the circle radius. Thus the increase of beam 
emittance in compressed plane is 
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L′  being compressed ellipse perimeter. It follows from 
(13) that ε ′∆ has a minimum value when perimeter 
smallest. Among the family of ellipses with equal area 
circle has a minimal perimeter. So 
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where R is the radius circle with the area equal to 
transformed emittance of incident beam. It follows from 
last formula that the smallest emittance increase is  

ss εεεε +=∆ 2min                        (15) 
We say that an incident beam is matched with 

scattering media when condition (15) takes place.  In 
general case we have the next formula that bind 
emittances of incident and scattered beam 

sinout εεε +≥                        (16) 
Fig. 1 is illustration to just discussed. While (15) 
expresses minimal emittance growth over primary beam 
emittance and elementary scattering emittance relation 
below describes the ellipse of matched beam 

133 22 FHH =Θ+Θ+                    (17) 
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Figure 1: An example of beam-target matching. 
 

This relation can be easily derived from relations 
(4),(10) if one keep in mind that matched scattered beam 
as it follows from previous discussion has to be similar to 
elementary scattering ellipse. 
To have some reference points we list some formulae that 
one can derive from distribution function or take from the 
reference [2,3] and make some estimations. Mean-square 
for scattering angle and transverse displacement are 

32222

6
1,

2
1 xyx ss Θ=Θ=θ                   (18) 

If Aluminum is used as scattering material then ≈0X 27 
g/cm2 = 10 cm and for a target with thickness 1 mm and 
for electron with energy 21 MeV we have 1,02 ≈Θs cm-1, 

07,02 ≈θ , 22 104,0 −×≈y cm, πε 3,0≈s cm*mrad. 

OFF-NORMAL INCIDENCE OF NEEDLE 
SHAPED BEAM ON A TARGET 

Distribution function (1) is the steady state solution of 
differential equation   for infinite homogeneous media 
and for charge starting from origin of coordinate system. 
One may suppose that it is still strict solution in the 
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special case of finite scattering media with the border that 
is normal to starting charge velocity. Outside the target in 
the forward direction a probability to find charge with 
coordinates y and x>h moving at angle θ to x-axis is 
defined by (1) with the next exchange 

hxhxyy ≥−−→ ),(θ .                 (19) 
One has the following distribution function in free space 
after such substitution 
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where 1, >= ξξhx . 
If the out coming interface is described by relation 

kyhx +=                              (21) 
a probability to find a charge with coordinate θ,y  on 
interface surface (21) is  
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The average of scattering angle θ on interface 
surface that might be associate with direction of motion of 
scattered beam is determined by integral  
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that after appropriate calculations may be reduced to 
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Integration limits are dictated by problem conditions. 
Lower limit is determined by condition 0≥x , while 
scattering plate dimensions determine upper integration 
limit. By analogy with light optics we call this mean value 
refraction angle. Introducing k== ααγθ tan);( we 
arrive at formula 
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As in traditional light optics the phenomenon of partial 
beam reflection from outside target border  may take 
place  as it demonstrated on fig. 2. 

Due to more tight bend of scattered beam envelope (18) 
compared with linear dependence of target border (21) 
one (of two) beam border does not intersect interface, 
target thickness being sufficient large. In this case part of 
particles flow leaves the target from its front side – the 

beam reflection takes place. Simple calculations result in 
formula 9/8tan22 =Θ αhs  for reflection threshold 
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Figure 2: A plot illustrating beam reflection. Strait lines 
are target borders, the curve is beam envelope. 

cmkhtkcmhcms )04.01/(8.3,15.0,55.0 212 ≈+====Θ −

, target material is aluminium. 
 
Taking into account the indistinct beam border envelope 
we rewrite reflection condition in the form 

1tan1tan 222 ≥+Θ ααts                          (26) 
t being scattering target thickness. 

CONCLUSION 
Basing on distribution function for a charge Coulomb 

scattering the number of features and mechanisms of 
charged particles propagation in scattering medium has 
been established. Among these are matching condition 
and appropriate formula for beam emittance growth, the 
mechanisms of beam refraction and reflections.  
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