VEPP-2000 collider operation in 2019-2021 runs: challenges and results

RuPAC21 26 Sep — 2 Oct 2021r. Alushta, Crimea

Contents

- VEPP-2000 layout & parameters
- Work crhonology
- Analysis of dead time
- Future plans
- Summary

VEPP-2000 layout & parameters

Main parameters @ 1GeV						
Circumference	24.388 m	Energy	160 ÷ 1000 MeV			
Number of bunches	1×1	Number of particles	1.0×10^{11}			
Betatron tunes	4.1/2.1	Beta-functions @ IP	8.5 cm			
Beam-beam param.	0.1	Luminosity	$1.0 \times 10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$			

Round beams concept

Luminosity increase scenario:

✓ Number of bunches (i.e. collision frequency)
✓ Bunch-by-bunch luminosity

✓ Geometric factor:

 \checkmark Beam-beam limit enhancement:

$$1 + \sigma_y / \sigma_x \Big)^2 = 4$$
$$\xi = \frac{N r_e \beta^*}{4\pi \gamma \sigma_0^2} \ge 0.1$$

✓ IBS for low energy? Better life time!

D. Shwartz et al., "Round colliding beams at vepp-2000with extreme tuneshifts". In Proc. eeFACT2018, Hong Kong, China Axial symmetry of counter beam force together with x-y symmetry of transfer matrix should provide additional integral of motion (angular momentum $M_z = x'y - xy'$). Particle dynamics remains nonlinear, but becomes 1D.

Lattice requirements:

- Head-on collisions
- Small and equal β-functions at IP:
- Equal beam emittances:
- Equal fractional parts of betatron tunes: V_x =

V.V.Danilov et al., EPAC'96, Barcelona, p.1149, (1996)

Scientific program

SND:

- Crossection of annigilation of electron-positron pair to hadrons
- Measurements of ω , ρ and ϕ (782, 770 and 1020 MeV)
- Looking for $e^+e^- \rightarrow \eta$ (547.853 ± 0.024 MeV)

<u>CMD-3:</u>

- Crossection of annigilation of electron-positron pair to hadrons
- Birth nucleon-antinucleon pairs $e^+e^- \rightarrow NN^-$
- Processes: $e^+e^- \rightarrow \eta'$, $e^+e^- \rightarrow \pi^0$, $e^+e^- \rightarrow D^{0*}$

V. Druzhinin et al., "Study of e+eannihilation into hadrons with the SND detector at the VEPP-2000 collider", Proceedings of Science, 2020

A E Ryzhenenkov et al., "Overview of the CMD-3 recent results", Journal of Physics: Conference Series, 2020

NN

2019-2020 run

Turning on:

- Tuning power, control and diagnostic systems
- Soft debugging and upgrade
- Stabilization of cooperative regime <u>VEPP-2000</u> <u>IK</u> <u>VEPP-4</u>
- Detectors calibration

to VEPP4

Luminosity — luminosyti time integral aquisition

SR at BEP — A. Krasnov et al., "Synchrotron Radiation Beamline Installed at BINP to Study the

High Luminosity LHC vacuum system", in Proc. RuPAC2016

Vacuum accident:

Burning hole in the vacuum chamber inside pre-injection magnet transfer line

Vacuum scrabbing:

Decreasing of the photodesorption coeffitient after high vacuum pumping off

1003.5 MeV

Vacuum accident

Luminosity mode efficiency

Other: IK tuning, Water station interruption, Power interruption

Future project "Helium outside"

Power supplies renewal

- Quadrupole magnets
- Pulse magnets

•

Lattice correction

"Round Beam Lattice Correction using Response Matrix at VEPP-2000", in Proc. IPAC'10, Kyoto, Japan, 2010, pp. 4542-4544.

Solenoids misalignment

D. Shwartz, «Final Focusing Solenoids Beam-based Positioning Test», in Proc. IPAC2021, Campinas, SP, Brazil

	dx, mm	dx', mrad	dy, mm	dy', mrad
181	$\textbf{+0.98} \pm 0.30$	$\textbf{+0.17} \pm 0.18$	$\textbf{+1.21} \pm 0.40$	$\textbf{-2.33} \pm 0.36$
1S2	$\textbf{+0.89} \pm 0.25$	$\textbf{+1.26} \pm 0.15$	$\textbf{+0.93} \pm 0.38$	$\textbf{-0.40} \pm 0.30$
183	$\textbf{+2.66} \pm 0.40$	$\textbf{-2.20} \pm 0.23$	$\textbf{+1.45} \pm 0.42$	$\textbf{+0.94} \pm 0.56$

BEP and KBV lattice

BEP to VEPP transfer line (KBV):

Lumonosity achieved

Flip-flop effect

CH2

0.17

0.18

0.19

Tune

0.21

-+

0.2

는 0.002 -0.001 + 0

16

Beam shaker

Results

Plans summary

- Booster and transfer channel lattice investigation
- Power supplies systems renewal
- * "Liquide helium outside" project realization
- Luminosity integral up to 1 fb-1 (now 350 pb⁻¹)

Thanks for your attention

