
________________________________________ 

# wolfgang.weingarten@cern.ch 

ON THE DEPENDENCE OF THE Q-VALUE ON THE ACCELERATING 
GRADIENT FOR SUPERCONDUCTING CAVITIES 

W. Weingarten, CERN, Geneva, Switzerland# 

Abstract 
The performance of niobium superconducting cavities 

for accelerator applications has improved considerably 
over the last decade. Individual cavities reach accelerating 
gradients close to the theoretical limit (about 50 MV/m), 
however sometimes at the expense of a re-treatment 
(baking, electro-polishing, rinsing) needed to eliminate an 
undesired decrease of the Q-value with the field gradient 
(Q-slope, Q-drop). Cures have been developed, but a 
generally accepted physical explanation is still missing. 
Furthermore, for successful research work on materials 
other than niobium, it is of utmost importance to 
understand better the limitations in gradient and Q-value 
of superconducting cavities. The paper presents an 
alternative explanation for the Q-slope and confronts it 
with experimental results for 352 and 1500 MHz cavities. 

INTRODUCTION AND SCOPE 
The technology of superconducting niobium cavities for 

accelerator application has made large progress in the last 
decade. Accelerating gradients between 5 and 10 MV/m 
that were safely obtained in the past, as for example in the 
Large Electron Positron collider LEP [1], are now 
reproducibly surpassed in individual cavities as well as in 
prototype cryo-modules such as needed for the XFEL at 
DESY (23.6 MV/m) or the International Linear Collider 
ILC under design study right now (31.5 MV/m). 

This paper is intended to revise earlier and recent 
experimental results on the decrease of the Q-value with 
the RF field amplitude, often observed for 
superconducting accelerating cavities.

Although this decrease is observed as well in niobium 
cavities manufactured from sheet metal [2], the focus of 
the paper is directed to niobium film cavities pioneered by 
CERN for the LEP electron positron collider and now 
also installed in the Large Hadron Collider LHC. 
Nevertheless the attempt is made to assess these two 
technologies (sheet metal and film) under a common 
viewpoint. 

In fact there are three different regimes where the Q-
value depends on the accelerating gradient or, 
equivalently, the maximum applied magnetic surface field 
amplitude B. In the low field region (B < 20 mT) the Q-
value may increase with B (low field Q-increase). In the 
intermediate field region (20-120 mT) the Q-value 
decreases, and beyond, incidentally, the Q-value may 
drop even faster. These latter two observations are named 
“Q-slope” and “Q-drop”. 

To understand the physical mechanism behind these 
observations is not only of academic interest, especially 

for film cavities. As the reason is neither clear nor 
mastered, film cavities are disregarded from being a 
serious competitor to sheet metal cavities.  Nonetheless, 
the many assets of the film technology make it a very 
serious candidate for large new projects. They include: a 
better thermal protection against quenches; a lower 
niobium cost; no need for niobium chemistry; revamping 
possibility. 

POSTULATES
The postulates of the model presented in this paper are 

the following: 

(i) Niobium metal, whether produced as a film or from 
sheet metal, is inhomogeneous and consists of different 
composites, say two of them for reasons of convenience. 
The first, filling up the smaller volume of both, is made 
up of a weak superconductor with a smaller lower critical 
field B0 than that of pure Nb, called “defects”. They have 
a surface density ns0 and a size a much smaller than all 
characteristic lengths of the superconductor (such as the 
coherence length � and penetration depth λ). The second, 
filling up the larger volume of both, consists of niobium 
metal, called “bulk”, characterized by a lower critical 
field Bc1

*, different from that of ordinary niobium, and a 
coherence lengths � determined by the mean free paths l 
and the coherence length �0 in the clean limit, 
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(ii) The RF losses are created by the transition of these 
defects from the superconducting to the normal 
conducting state, starting from B0, and increasing the size 
of its normal conducting volume with increasing magnetic 
field B.  They perform the transition back again into the 
superconducting state when B decreases again later during 
the RF cycle. Their inherent condensation energy is 
dissipated to the helium bath, twice per RF cycle. 

THE RF LOSSES ASSOCIATED WITH 
THE Q-SLOPE 

The phase transition as described before is supposed be 
of second order, because niobium is a type II 
superconductor, already when being in elemental form 
and the more when containing impurities. A rigorous 
approach should therefore be based on the Ginzburg-
Landau theory, which, for small ξ, is approximated by the 
London theory. The latter approach is chosen as a more 
qualitative approach, the aim being mainly to present for 
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discussion in this workshop a possible explanation for the 
Q-slope and Q-drop.

The normal-superconducting interface 
We imagine an interface between a vacuum or normal 

conducting metal and a superconducting metal (Fig. 1). 
The critical magnetic field Bc1

* is determined from the 
fact that the interface energy of type II superconductors 
becomes negative, if B > Bc1

*. 
In a type II superconductor, characterized by a 

Ginzburg-Landau parameter � = �/� > 1/�2, when passing 
the interface along the z-axis, the condensation into 
Cooper pair  of the normal conducting electrons reaches 
its bulk value only after a distance �, the coherence length. 
Likewise, the complete suppression of the magnetic field 
inside the superconductor only happens at a still further 
distance �, the penetration depth. This first effect gives 
rise to an increase of the condensation energy density ΔEc 
= 1/(2μ0)Bth

2·Vc over a volume Vc = A·ξ (surface area A) 
compared to a situation where the Cooper pair density 
will reach its bulk value already at the interface z = 0. Vc 
is called the “condensation” volume. Bth is the local 
thermodynamic critical field in the vicinity of the defect 
that depends on the temperature T as: 
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with Tc being the critical temperature. 

The second effect gives rise to a decrease of the 
diamagnetic energy ΔEB = 1/(2μ0)B2·Vm over a volume Vm 
= A·λ compared to a situation where the magnetic field 
will reach its bulk value already at the interface z = 0. B is 
the externally applied magnetic field. Vm is called the 
“magnetic” volume. Therefore, when figuring out the 
energy balance, in a type II superconductor, for 
sufficiently large B, the diamagnetic energy loss exceeds 
the condensation energy gain and is therefore 
energetically favoured. In other words, the interface 
energy ΔEc - ΔEB becomes negative. Hence the tendency 
to create as many interfaces between the normal metal 
and the superconductor, as is physically possible from an 
energy and stability point of view. That is the reason why 
the magnetic field in a type II superconductor splits up 
into minuscule filaments. 

Based on the preceding arguments, the energy balance 
ΔE between the condensation energy Ec and the 
diamagnetic energy EB, for a defect with volume Vc, 
exposed to a magnetic field B, is 
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Figure 1: Interface between vacuum or normal 
conducting metal and superconducting metal for a type II 
superconductor with at the top a smaller applied 
magnetic field B than at the bottom. The hatched red and 
blue areas indicate the condensation energy gain or the 
diamagnetic energy loss near the interface. They are 
about equal in size indicating that the magnetic field B is 
just above the threshold field Bc1

* necessary to create the 
interface normal conductor-superconductor, whereas the 
magnetic field B inside the superconductor is below that 
threshold. For increasing magnetic field B, the 
condensation volume, symbolized by ξ, increases as well 
(bottom). 

Hence, the energy balance ΔE becomes negative once 
the applied magnetic field B exceeds 
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which is equivalent with 

s
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cmthc BVBV ⋅=⋅ .    (2) 

For the special case of an interface between a normal-
conducting half sphere of radius a embedded at the 
surface of a superconducting metal, the concerned 
volumes are Vm = 2/3⋅π⋅(a+ λ)�3  and Vc = 2/3⋅π⋅(a+ ξ)�3, 
from which we derive 
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Eq. 2 may be interpreted as a functional relation 
between the applied magnetic field B = Bc1

* and the 
associated condensation volume Vc (B), with Bth and Vm 
being considered as constant.  

Fig. 1 depicts the dependence on the magnetic field B of 
the condensation volume Vc, being proportional to the 
coherence length ξ. The top of Fig. 1 illustrates the 
threshold condition ΔE = 0 for a smaller magnetic field B 
than at the bottom. 

Differentiating eq. 2 results in an expression for the 
increase of the condensation volume �Vc (Bc1

*) by the 
action of the applied magnetic field �Bc1

*, 
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If the magnetic volume Vm is not constant, eq. 3 must 
be modified to 
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A distinction must be made between the situation, when 
the defect is located at the surface and when it is located 
in the bulk, but still within a distance of the penetration 
depth λ away from the surface and hence exposed to the 
RF current.  

If embedded in the bulk, the current passes around the 
defect on both sides, when becoming normal conducting. 
In other words, a loop-like microscopic magnetic field is 
created with the net result of zero change of magnetic 
induction in the superconductor: the diamagnetic energy 
remains unchanged, the energy balance ΔE will not 

become negative, and hence no transition from the 
superconducting state to the normal conducting state will 
occur. This is the reason why the effect as described here 
will only take place at the surface and not inside the 
superconductor. 

Determination of the Q-slope related RF losses 
The basic idea for determining the RF losses consists in 

the fact that sufficiently small normal conducting 
“defects” of radius a < ξ are looped around by the RF 
currents.  The radius a may be considered as equivalent to 
a local coherence length being smaller than the “bulk”-
value. The passing of the RF currents around the normal 
conducting zones is a situation very similar to the DC 
case. In what follows a precision shall be given on what 
means “small” and why is it that the RF current flows 
around these defects when being in the normal state. 

Under what conditions does the RF current loop around 
the defect when being in the normal conducting state? 

The idea is - as in the DC case - that the distribution of 
current is such that it follows a path that minimizes the 
production of heat. In other words, the distribution of 
impedances determines the pattern of current flow. In the 
present situation the relevant impedances are the ohmic 
resistance R of the defect and the kinetic inductance L of 
the bulk superconducting metal after having become 
normal conducting (as shown in Fig. 2). 

 
Figure 2: Parallel impedance model description of 
current with kinetic inductance L looping around a defect 
with resistance R. 

The ohmic resistance amounts to R = (σ·δ)-1, depending 
on the conductivity σ and the skin depth δ, whereas the 
kinetic inductance is L ~ μ0·a2/3·λ1/3/4, as shown in the 
Annex. The condition that the current avoids the normal 
conducting defect is therefore ω·μ0· a  � ω·μ0· a2/3·λ1/3 « 
(σ·δ)-1. With the normal conducting skin depth, δ  = 
(2/μ0·σ·ω)1/2,  the inequality relation implies that the 
defect size a is small compared to the critical defect size 
ac = δ/2. For normal conducting niobium at 1 GHz and 
4.2 K, with a room temperature conductivity σ = 7.6⋅106 
(Ωm)-1, and a residual resistivity ratio RRR = 10, the 
critical defect size is ac = 900 nm. One concludes 
therefore that the RF current avoids the normal 
conducting defect if its actual size is much smaller than ac, 
say in the order of magnitude of the penetration depth λ � 
50-100 nm or below, very similar to fluxon-induced 
losses [3]. 
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Figure 3: Interface between normal and superconducting metal including a normal conducting “surface defect”; the 
distribution of current looping around the defect (a) is a superposition of two different current distributions (b, c). Case 
(b) is equivalent to the defect being in the superconducting state and the current passing through. For case (c) the 
current inside the defect is opposite to the current in (b), resulting in a net zero current in (a,) and giving rise to an 
additional inductance L, as outlined in the Annex. 

DETERMINATION OF THE SURFACE 
RESISTANCE 

Quantitative analysis of the Q-slope 
In summary we conclude that, if the defect is located at 

the surface, upon becoming normal conducting, the RF 
current loops around it, provided that its radius a is much 
smaller than the normal conducting skin depth δ. 
Consequently, when it undergoes the transition from 
superconducting to normal conducting, a voltage V is 
created across such that the current I inside the defect 
vanishes. 

The energy balance between the defect being in the 
superconducting and in the normal conducting state is 
illustrated in Fig. 3. The energy of the normal conducting 
state, compared to that of the superconducting state, is 
increased by three contributions: (i) the condensation 
energy of the defect, (ii) the kinetic energy of the 
circulating currents that annihilate the superconducting 
current through the normal conducting defect, and (iii) the 
additional magnetic field that these circulating currents 
create. The second term is not altered by the transition 
from the superconducting to the normal conducting state, 
because the current I is supposed to be equal before and 
after. The third effect does not lead to dissipation, because 
the induced voltage V = L·dI/dt is in quadrature to the 
current I. Therefore, only the first effect creates 
dissipation. 

The condensation energy ΔEc needed to transform the 
condensation volume ΔVc normal conducting, is given by 
the expression 
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Insertion of eq. 3 and integration over Bc1
* from 0, for 

convenience, to the magnetic field amplitude B, results in  
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By taking into account that per full RF cycle T = 1/f, f 
being the RF frequency, twice the work ΔEc will be 
expended by the RF field, the dissipated power P due to 
the increase of the normal conducting zone is 
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For n0 defects per volume, the surface density of defects 
is ns0 = n0

2/3. Hence the dissipated power p per area is 
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By the definition of the surface resistance Rs, p = 
Rs·H2/2, H = B/μ0 being the applied RF magnetic field 
amplitude, and defining the magnetic volume of a half 
sphere as Vm= 2/3·π·λ3, we derive for the surface 
resistance 
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A more refined analysis, by taking into account eq. 4, 
results in an infinite product expansion 
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which depends critically, for larger magnetic fields B, on 
the Ginzburg-Landau parameter κ. 

With the two independent fit parameters, α = λ3·ns0/Bth
2 

and β = (κ/Bth)2, which depend via λ, κ, and Bth on the 
temperature T, the surface resistance is 
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The two parameters α and β describe the Q-slope and 
Q-drop, respectively. 

Remarks on the Q-drop 
As suggested by the singularity of eq. 4, the surface 

resistance will grow rapidly above the “onset” magnetic 
field, if the applied magnetic field B = Bc1

* will approach 
the lower critical field of the bulk Bc1

 � Bth
 /κ . 

At that moment, the magnetic volume Vm can no longer 
be considered as constant, but will increase rapidly with B. 
The important parameter is the Ginzburg-Landau 
parameter κ that depends on interstitial impurities such as 
oxygen. By diffusing these impurities from the surface 
into the bulk, κ can be decreased with a consequent 
increase of the onset field for the Q-drop. This 
mechanism may explain the observed Q-drop as well as 
the cures that were experimentally found to shift the onset 
field to higher values [2]. 

Remarks on the low field Q-increase 
The surface resistance as described by eq. 6 needs 

another modification due to the transition per RF half 
cycle of the defects, in the very low magnetic field region 
region B < 20 mT, into the normal conducting state and 
back again. In a similar manner as decribed by eq. 2 the 
condensation energy 
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is dissipated, independent of the RF magnetic field 
amplitude B. The subscript “d” refers to the defect, and B0 
is its critical field. This additional loss results in an 
additive term for the surface resistance 
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which explains the low field Q-increase. 

 

 

 

 

 

EXPERIMENTAL RESULTS 
Series RF measurements of 352 and 1500 MHz 
niobium film cavities 

A large number of cavities at 352 MHz and 1500 MHz 
were tested at CERN, the first series of measurements for 
validating the specified performance of the niobium film 
cavities for the LEP collider, the second series for better 
understanding the behavior of the niobium film under 
exposure to an RF field. The original papers and the 
comparison of the results in terms of Q-slope are 
published elsewhere [4, 5]. 

 
Figure 4: Surface resistance (in nΩ) at 4.2 K of niobium 
film cavities at 352 MHz (for LEP, top) and 1500 MHz 
(bottom) versus the RF magnetic field amplitude B (in 
mT). Superposed in black are the data from the original 
papers, ref. 4 and 5, respectively. Error bars include the 
effect of the spread between different films (bottom). The 
dashed coloured lines indicate the measured values, the 
continuous coloured ones are calculated by using eq. 5 
with, except for the frequency, a common parameter α. 

The rationale behind this study was the hope that by 
analyzing such a large number of cavities (34 at 352 
MHz) random variations in RF performance will average 
out and that the summary data are representative for the 
physics of the film. 

Instead of the Q-slope, the equivalent surface resistance 
Rs was determined for these two sets of analysis. They are 
summarized in the relations Rs [nΩ] = 0.26⋅ B [mT] + 
0.033⋅ B2 [mT] (4.2 K, 352 MHz) and Rs [nΩ] = 0.741⋅ B 
[mT] + 0.140⋅ B2 [mT] (4.2 K, 1500 MHz), c.f. Fig. 4. 
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Figure 5: The surface resistance (left column) and the Q-value (right column) of two niobium sheet metal cavities (top) 
and one niobium film cavitiy (bottom) displaying the typical low field Q-increase,  Q-slope and Q-drop. The fit 
parameters are indicated in the right column each below the graphs: (a) unbaked; (b) electro-polished and baked; (c) 
high performance cavity sputtered under Kr gas atmosphere. 

The surface resistances Rs determined experimentally 
are indicated by the dashed coloured lines, those as 
determined from eq. 5 are represented by the continuous 
coloured lines. A common set of parameters, the 

frequency f excepted, were used to determine Rs from eq. 
5 for both sets of data: α = 2.7·10-8[m/T2]. 
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TYPICAL TEST RESULTS OF INDIVIDUAL 
NIOBIUM SHEET METAL AND FILM CAVITIES 

In order to further check the proposed model, some RF 
tests results of individual sheet metal and film cavities 
were investigated in more detail. The concerned cavities 
are representative of state of the art processing. They 
show the behaviour of Q-slope and Q-drop. The data 
points were adopted from references 5, 6, and 7 (Fig.5). 

The data points were analyzed by applying eq. 6 with 
the infinite product expansion breaking off after the 25th 
term and taking into account the term descibing the low 
field Q-increae (eq. 7). 

The physical significance of the parameters α and β, as 
introduced in eq. 6, is the following: α describes the total 
magnetic volume per unit area (which in fact is a length) 
prone to undergo the transition from the superconducting 
to the normal conducting state. This volume is mainly 
determined by the cube of the penetration depth λ. It 
remains constant with increasing B until the threshold of 
the lower critical magnetic field Bc1 of the bulk is reached. 
at which moment it  increases rapidly. The parameter β is 
linked to this threshold, being proportional to the square 
of the Ginzburg-Landau parameter κ. 

DATA ANALYSIS 
A first and very preliminary example of a possible data 

analysis shall be presented here, by using the data of Fig. 
5 (a) – (c).  

No rigourous error analysis is included. The analysis 
starts with the parameters α and β as well as the 
penetration depth λ, all three being directly determined by 
RF measurements. 

The analysis is based on well established relations for 
dirty superconductors [9]. The mean free path l is 
determined from the relation 

( ) ( )
l

TT L
01

ξλλ +⋅=
. 

ξ0 and λL are the coherence length and London 
penetration depth for clean niobium. The coherence 
length ξ for a dirty superconductor is given by eq. 1.

 Using κ = λ/ξ, the thermodynamic critical field Bth is 
determined from β = (κ/Bth)2, and the surface density of 
defects from α = λ3·ns0/Bth

2. 
It is reassuring that the data analysis (Table 1)  results 

in values for both the thermodynamic critical field Bth0 
and the Ginzburg-Landau parameter κ which are in the 
range of the expected: Bth0 = 186 (182, 207) mT  for κ = 
1.7 (1.0, 2.3) [10]. 

Assuming the correctness of the model as decribed, the 
surface density of defects ns0 and the Ginzburg-Landau 
parameter κ of the film cavity (c) are both much larger 
than the similar values for the sheet metal cavities (a, b), 
confirming the larger value of Q-slope that the film 
cavities display. In addition, the average distance of 
defects for film cavities ns0

-1/2 = 1.2 μm lies beyond the 

intrinsic lengths such as the grain size, corroberating the 
possible importance of macroscopic defects relative to the 
RF performance [8]. The critical field of the defects is 
much lower (factor 102 - 103) than that of the bulk. This 
information, combined with an analysis of RF tests under 
different helium bath temperatures, should allow 
identifying the nature of the defects in the future and 
hopefully pave the way for their elimination.     

Table 1: Preliminary analysis of the data as shown in Fig. 5 

(a) (b) (c)

Temperature of helium bath T [K] 1.37 1.8 1.7 

Effective penetration depth λ [nm] 36 [6] 30.5 [5] 40 [5] 

Fit parameter α  [m·T-2] 2.7·10-11 11·10-11 87·10-11

Fit parameter β  [T-2] 85 34 132 

Critical field of defect Β0  [mT] 1.5 1.5 0.15 

Mean free path l [nm] 61 311 37 

Effective coherence length  ξ  [nm] 21 30 17 

Ginzburg-Landau parameter κ 1.7 1.0 2.3 

Thermodynamic critical field Bth0 
near defect [mT] 186 182 207 

Surface density of defects ns0 [m-2] 2·1010 12·1010 58·1010

Clean limit coherence length  for Nb ξ0 = 33 nm [5] 
London penetration depth for Nb λL = 29 nm [5] 

CONCLUSION 
The dissipation that becomes manifest by the low field 

Q-increase, Q-slope and Q-drop is explained in terms of a 
surface effect caused by the magnetic field. 

The superconducting surface is composed of the 
ordinary superconducting metal (bulk) into which 
minuscule weak superconducting “defects” are embedded. 

These defects lead to dissipation into the helium bath of 
the condensation energy involved when they undergo the 
transition, under the action of the RF magnetic field, from 
the superconducting into the normal conducting state and 
back again during an RF half cycle. 

The dissipation is described in terms of a surface 
resistance that depends, apart from the experimentally 
controlled parameters, such as the RF frequency f, bath 
temperature T and the RF magnetic field amplitude B, on 
three parameters, B0, α and β, describing, in this order, 
the low field Q-increase, the Q-slope and the Q-drop. 

The magnetic field B0 indicates the critical field of the 
defect, the parameter α is mainly determined by the 
density of defects and the cube of the penetration depth λ 
of the bulk superconductor. The parameter β, is 
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proportional to the square of the Ginzburg-Landau 
parameter κ  of the bulk superconductor. 

A principle way of data analysis was outlined. 

The superior performance of state-of-the-art Nb sheet 
cavities compared to Nb film cavities is explained in 
terms of a smaller defect density and smaller Ginzburg-
Landau parameter. 

Evidence is presented for weak superconducting defects 
(with an average distance beyond the grain size) causing 
the dependence of the Q-value on the field. 

ANNEX: DETERMINATION OF THE 
INDUCTANCE OF A DEFECT 

In the high κ limit, the magnetic induction B outside the 
weakly superconducting hemispherical defect of radius a 
is described by the differential equation derived from the 
London approximation of the Ginzburg-Landau 
formalism, 

01
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The separation ansatz leads to two differential equations, 
the first of which is 

( ) 011
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�
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and  
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It can be transformed, by means of ( ) rBrul ⋅= Φ , 
into 
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�
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�
�
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r
B

r
llB

λ . 

By finally using 

( )rw
r

B l⋅=Φ
1 , 

λ
rx = , 

the equation is identical with the Bessel differential 
equation [11] 
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which has the solution that vanishes for x 	 
, 
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The second differential equation, 

( ) 0
sin

11sin
sin

1
2 =�

�
�

�
�
�

Θ
−++�

�
�

�
�
�

Θ∂
∂Θ

Θ∂
∂

Θ ll PllP
 

transforms, using 

Θ= cosx , 

into the associated Legendre differential equation  
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It is solved by 

( ) ( ) ( )xP
dx
dxxP ll

2121 1−=
.  

Re-inserting back, and taking into account the boundary 
conditions for r = a, 

( )
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Θ⋅⋅
⋅=Θ

=Φ 2
sin

� 0
0
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B

ar , 

one finds for the magnetic induction outside the defect, 
when a � r, a « λ, with H0 the applied magnetic field, 
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and inside the defect, r � a, 

( ) Θ⋅�
�
�

�
�
�⋅⋅=ΘΦ sin
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00i, λ
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. 

TUP16 Proceedings of SRF2007, Peking Univ., Beijing, China

152 TUP: Poster Session I



 
Figure 6: Magnetic induction BΦ(r/λ)��. The defect size is 
0.1·a (top). The inductance L divided by the third root of 
the penetration depth λ vs. the defect radius a is 
described by eq. 9 (bottom). 

The magnetic induction BΦ (r/λ) is depicted in Fig. 6 in 
units of Tesla, as calculated for Θ = π/2 and μ0·H0 = 1 T. 

The stored energy EB is the sum of the stored energy 
inside and outside the defect (Fig. 6, top): 
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. (8) 
With the current I passing through the defect, being 

composed of the product of the current density and the 
cross section of the defect, 

2
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2

0

aBI ⋅⋅
⋅

=
λ , 

the inductance L is 

2

2
I
EL B⋅

=
. 

The inductance as calculated point by point by 
numerical integration of eq. 8 using MATHEMATICA®  
is nicely fitted by the relation (Fig. 6, bottom) 

.
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�
103.3 3132031327 λλ ⋅⋅≈⋅⋅⋅≈ − aaL

  (9) 
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