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Abstract
Using our recently developed high-order accurate

Maxwell solver, NEKCEM, we carried out longitudinal
wakefields calculations for a 9-cell TESLA cavity struc-
ture in 3D. Indirect calculations are used for wake poten-
tials. Computaional results by NEKCEM are demonstrated
in comparison with GdfidL.

INTRODUCTION
NEKCEM employs spectral element discontinuous

Galerkin (SEDG) method which is based on domain
decomposition approach using spectral element dis-
cretizations on Gauss-Lobatto-Legendre grids with body-
conforming hexahedral meshes [1]. The numerical scheme
is designed to ensure high-order spectral accuracy [2, 4],
using the discontinuous Galerkin form with boundary con-
ditions weakly enforced through a flux term between ele-
ments. Concerns related to implementation on wake poten-
tial calculations are discussed, and wake potential calcu-
lations with indirect method by NEKCEM [3] are demon-
strated in comparison with the results by a finite difference
time-domain code, GdfidL.

FORMULATIONS
Governing equations to study beam dynamics and nu-

merical discretizations in space and time are describded as
follows.

Maxwell’s Equations
We begin with the Maxwell equations:

μ
∂H

∂t
= −∇× E, ε

∂E

∂t
= ∇×H − J (1)

∇ ·E =
ρ

ε
, ∇ ·H = 0, (2)

where the current source J = (0, 0, Jz) is defined for an
ultra-relativistic on-axis Gaussian beam moving in the z-
direction:

Jz = cρ(x, y)ρ(z − ct), (3)

ρ(x, y) =
1

σr
√

2π
exp

(
−x

2 + y2

2σ2r

)
, (4)

∗Work supported by the U.S. Dept. of Energy under Contract DE-
AC02-06CH11357.

†mmin@mcs.anl.gov

ρ(z) =
1

σz
√

2π
exp

(
− z2

2σ2z

)
. (5)

Conservation Form
We rewrite equation (1) into a conservation form

Q
∂q

∂t
+∇ · F (q) = −J, (6)

where
q = (Hx, Hy, Hz , Ex, Ey, Ez)T , (7)

Q = diag(μ, μ, μ, ε, ε, ε), (8)

and the flux F (q) in the following form,
⎡
⎣ 0 Ez −Ey 0 −Hz Hy

−Ez 0 Ex Hz 0 −Hx

Ey −Ex 0 −Hy Hx 0

⎤
⎦
T

. (9)

Numerical Discretizations
We seek a numerical solution qN, satisfying(
Q
∂qN

∂t
+∇ · F (qN) + J, φ

)
Ωe

= (n̂ · [F − F ∗], φ)∂Ωe ,

(10)
where φ = Li(x) is a local discontinuous test function and
the numerical flux F ∗ is defined as in [2]. In the computa-
tional domain Ω as a set of body-conforming, nonoverlap-
ping hexahedral meshes Ωe, we define the local solution
qN on each Ωe as

qN(x, t) =
N∑
j=0

qj(t)Lj(x), (11)

where qj(t) is the solution at N grid points xj on Ωe, and
Lj(x) is the three-dimensional Legendre Lagrange interpo-
lation polynomial associated with the N -nodes [1]. Plug-
ging (11) into the weak formulation (10 and taking Gauss
quadrature for the integration, we obtain semi-discrete for-
mulation of the scheme. Then we apply the fourth-order
Runge-Kutta method for time integration.

Initial and Boundary Conditions
Initial fields are computed numerically for the ingoing

pipe. For boundary conditions, we apply the uniaxial per-
fectly matched layer (UPML) [5] in the longitudinal direc-
tion and the perfectly electric conducting (PEC) boundary
[2] for the transverse direction.
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COMPUTATIONAL RESULTS
We demonstrate 9-cell TESLA mesh, and its wake po-

tentials for various bunch sizes at different radius. Results
are compared to GdfidL for the case of bunch size σz = 5
mm. Parallel efficiency of NEKCEM is also discussed.

TESLA Cavity with Spectral Element Mesh
We built a 9-Cell TESLA mesh shown in Figure 1, fol-

lowing the unit as in [6]. In transverse direction, meshes
are scaled for radius grater than 26mm. Within the radius
26 mm, wake potentials are calculated along mesh surface
in three dimensions.

Figure 1: 9-Cell TESLAMesh (top); Spectral Element Dis-
cretization (bottom).

Wake Potential
We compute the longitudinal wake potential defined as

Wz(x, y, s) = − 1
Q

∫ ∞

−∞
Ez(x, y, z, t)dz, (12)

whereQ is the total charge of a beam and

s = ct− z. (13)

Figure 2 shows wake potentials for different bunch sizes
with a fixed polynomial degree N = 5 and the number of
element E = 1, 368. The behaviors of the wake poten-
tial profiles show reasonable profiles for the bunche sizes 3
mm, 4 mm and 5 mm.
Since we use indirect method for wake potential calcula-

tions, we examine how the wake potential profiles change
at different radius. Figure 3 shows wake potential profiles

at radius 26.0mm and 19.25mm for bunch size 5 mmwith
the degree of polynomial N = 5 and the number of ele-
ment E = 1, 368. The discrepancy for the cases between
the 26.0 mm and 19.25 mm are shown on the unstructured
grids unlike the case on the finite difference grids. Further
Study has to be done with relatively even and finer meshes
for the unstructured mesh case.
Figure 4 shows comparisons of the wake potentials for

the bunch size 5mm beteen the Gdfdl and the SEDG. For
the SEDG, the dashed line shows the case for N = 7 and
solid line for N = 5. Discrepancy is observed on the re-
sults between GdfidL and SEDG. Further Study has to be
carried out by changing the meshes and resolutions for the
unstructured mesh case.
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Figure 2: Wake potentials on the surface at r = 26.0mm
for σz = 3, σz = 4 mm and σz = 5 mm. σr = 1mm.
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Figure 3: Wake potentials on the surface at r = 26.0 mm
and r = 19.25 mm for σz = 1 mm and σr = 1 mm.

Parallel Efficiency
Figure 5 demonstrate the scaling of 3D computations of

NEKCEM. The vertical axis is CPU time per time step,
per grid point, per processor. The number of elements is
fixed at E = 512 (83). The polynomial degrees varies
from N = 5 to 10. Simulations were run on the number
of processor, P = 2k, k = 0, . . . , 7, on the linux clus-
ter, Jazz, at Argonne. The coarsest computations involve
n = 64, 000 points, which yields roughly 100 points per
processor for the P = 128 case. Each curve shows some
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Figure 4: Wake potentials on the surface at r = 26.0mm
for σz = 5 mm and σr = 1 mm on the meshes.

loss of parallel efficiency as the number of processors is in-
creased - the CPU time increases from right (P = 1) to left
(P = 128) on the graph. However, below approximately
3000 to 10,000 points per processor the CPU time actually
decreases with super-linear speed-up.

102 103 104 105 106

10−5

Points per Processsor

C
PU

 ti
m

e 
pe

r G
rid

 p
er

 T
im

es
te

p

N=3
N=4
N=5
N=6
N=7
N=8

Figure 5: CPU time per grid point per time step per proces-
sor for 512 spectral elements withN ranging from 5 to 10,
as a function of number of points per processor on Jazz.

CONCLUSIONS
We have applied the spectral element discontinuous

Galerkin method to simulate beam dynamics within a
three-dimensional 9-cell TESLA cavity. The wake poten-
tial calculations show resonable profiles depending on the
bunch size. We showed comparisons on the wake potential
calculations with Gdfdl results. We observe some discrep-
ancy in the wake potential profiles by SEDG compared to
the cases in GdfidL. Further study will be carried out re-
garding on the mesh refinement and resolution as a first
step towards one picosecond bunch simulations.
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