EFFECTS OF CHEMICAL TREATMENTS ON THE SURFACE ROUGHESS AND SURFACE MAGNETIC FIELD EHANCEMENT OF NIOBIUM-3 TIN FILMS FOR SUPERCONDUCTING RADIO-FREQUENCY CAVITIES*

R. Porter[†], F. Furuta, D. L. Hall, M. Liepe, and J. T. Maniscalco Cornell Laboratory for Accelerator-Based Sciences and Education (CLASSE), Ithaca, NY, USA

Abstract

Current niobium-3 tin (Nb₃Sn) films produced via vapor diffusion have rougher surfaces than typical electropolished niobium surfaces causing significantly enhancement of the surface magnetic fields. Reducing surface roughness of Nb₃Sn surfaces may be necessary to achieve higher gradient accelerator cavities with high O. Previous work at Cornell has shown the impact of several chemical treatments on the surface roughness of Nb₃Sn films; however, it had not been evaluated how the changes in surface roughness impact the surface magnetic field enhancement. In this paper we present simulations of the surface field enhancement of oxipolished Nb₃Sn, which was shown to be effective at reducing the surface roughness of Nb₃Sn. The surface magnetic field enhancement data is compared to those of unetched Nb₃Sn to find that the surface magnetic field enhancement (and surface roughness) has been roughly halved.

INTRODUCTION

Current niobium-3 tin coated niobium produced at Cornell University using tin vapor diffusion [1-5] has a significantly rougher surface than conventional electropolished niobium (see Fig. 1) [6,7]. Previous work has shown that this roughness can significantly enhance the surface magnetic field (1% of the surface has magnetic fields enhanced by at least 45%), possibly lowering the maximum achievable quench field or causing other deleterious effects [6]. This is further supported by high-pulsed power klystron testing done near T_c (see Fig. 2) that suggests the maximal achievable quench field of Nb₃Sn (extrapolated to 0 K) would be 230 mT [8]. This is much less than theoretical predictions of 400 mT [9]. However, if 1% of the cavity becoming normal conducting was sufficient to cause quench then the data suggests a maximal quench field (extrapolated to 0 K) of 330 mT, much closer to the theoretical superheating field.

Work is being done to find chemical treatments that can reduce the surface roughness and destroy possible surface defects without destroying the thin $(2 - 3 \mu m)$ Nb₃Sn surface layer [7, 10]. Recent results have found standard electropolishing and buffered chemical polish (1:1:2) to be ineffective for reducing the roughness of Nb₃Sn, but that oxipolishing

(c) Nb₃Sn SEM image.

Figure 1: Surface images of Nb and Nb₃Sn. Notice that the grain sizes of Nb₃Sn are on the order of microns, much smaller than Nb.

Figure 2: Plot of quench field (calculated from internal energy) versus T^2 from klystron high pulsed power measurements of Cornell Nb₃Sn cavities [8]

can half the surface roughness while etching away less than $1 \mu m$ (see Fig. 3) [7], with further reduction likely with additional polishing; however, it is has not been evaluated how this surface roughness reduction impacts the surface magnetic field enhancement. This paper uses surface height maps from Atomic Force Microscopy (AFM) to calculate

Fundamental SRF R&D Other than bulk Nb

^{*} This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams. This work was supported in part by U.S. DOE award DE-SC0008431. This work made use of the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1120296) [†] rdp98@cornell.edu

Figure 3: ASD of Nb₃Sn samples receiving different amounts of oxipolish. Approximate amount of removal listed.

the surface magnetic field enhancement of a surface etched using oxipolish and compares it to previous calculations for unetched Nb₃Sn.

METHOD

A Nb₃Sn sample that received 24 passes of 30 V oxipolish sample was used for this study (the surface roughness of the sample is shown in Fig. 3). In the oxipolish process the sample was anodized to 30 V in order to build up an oxide layer, then exposed to hydroflouric acid until the oxide was burnt off. This process was repeated 24 times removing ≈ 800 nm. After polishing, three 20 µm × 20 µm AFM scans of the surface were made to obtain surface height maps.

The method of calculating the surface field enhancement was previously described in [6] and a detailed description is provided there. Here we provide a brief summary of the technique.

In this method line segments (several microns long) from AFM surface scans of Nb_3Sn are rotated to make a rotationally symmetric 3D surfaces (azimuthal symmetry required by simulation code). This surface replaces part of the walls of a cavity model in an area where the magnetic field is fairly uniform (the end of cylindrical cavity in the TE111 mode).

The surface magnetic fields are calculated using SU-PERLANS2 (SLANS2), a 2 D finite element eigenmode solver [11]. This code calculates non-azimuthally symmetric modes in azimuthally symmetric cavities. The surface magnetic fields are also calculated for a completely smooth geometry. The surface magnetic fields on the rough surface are compared to the surface magnetic fields for a smooth geometry (on the line through the center of the rough patch that is parallel to the magnetic field) and the surface magnetic field enhancement factor is computed¹ (see Fig. 4 for an example of surface magnetic field enhacements).

A procedure was followed to choose line segments: A cross section was taken through an AFM scan; a flat spot near

Figure 4: Top: A 1D AFM height map from an unetched Nb₃Sn surfaced used for simulating surface H-field. Bottom: The field enhancement found for the height map shown above [6].

the average height of the scan was chosen as one end point; the furthest flat point away from the first but within 11 μ m was chosen for the second point (longer line segments often cause SLANS2 to fail); the cross section was moved 2.5 μ m and another line segment was chosen. 23 line segments were used from three 20 μ m × 20 μ m AFM scans for the oxipolished sample (only 5 line segments were used from one of the AFM scans). For the unetched Nb₃Sn 20 shorter lines were used from two 20 μ m × 20 μ m AFM scans [6].

RESULTS AND DISCUSSION

The surface magnetic field enhancement data was binned and weighted by the total surface area² with magnetic field enhancement in that range.

A normalized histogram of the oxipolished Nb₃Sn data is shown in Fig. 5 along with the unetched Nb₃Sn data [6]. For the oxipolish Nb₃Sn, 10% of the points are over 1.08, 5% of the points are above 1.15 and 1% of the points are above 1.21. This is less than half the magnetic field enhancements found for unetched Nb₃Sn where 10% of the points are over 1.2, 5% of the points are above 1.29 and 1% of the points are above 1.45.

¹ The surface mangetic field enhancement, β , is calculated as: $\beta(r) = H_{\text{rough}}(r, h(r))/H_{\text{smooth}}(r, 0)$, where $H_{\text{rough}}(r, h(r))$ and $H_{\text{smooth}}(r, 0)$ are the surface magnetic fields on rough and smooth surface respectively.

² Because enhancement data was 1 D, it was actually weighted by length, but this should be equivalent to surface area.

Figure 5: Histogram of relative area with a certain surface magnetic field enhancement factor of unetched and oxipolished Nb₃Sn.

The oxipolish histogram has a center of 0.914 ± 0.007 (stat) while the histogram of the unetched sample has a center of 0.958 ± 0.011 (stat). Having an average less than 1 is not unexpected as sharp peaks with a large surface magnetic field can depress the magnetic field over a large area, lowering the mean value of the enhancement factor. It is interesting that the oxipolished histograms center is less than the unetched samples' center. This could be due to unaccounted for systematic errors in our analysis, but could also be caused by etching changing the shape of the surface. If we shift the oxipolish histogram to have the same center as the unetched 1 histogram, then 1% of the points are above 1.25.

CONCLUSION

Oxipolishing was able to roughly half both surface roughness and surface magnetic field enhancement of Nb₃Sn produced via tin vapor diffusion when used to etch 800 nm. For unetched Nb₃Sn 1% of the surface had surface magnetic field enhancement factors above 1.45; oxipolishing reduced this to an enhancement factor of 1.21. Only 800 nm of the $2 - 3 \mu m$ surface layer was removed, allowing for more ox-

ipolishing to be done before Nb₃Sn layer becomes too thin. Additional oxipolishing may further improve results.

REFERENCES

- S. Posen, and M. Liepe, "Stoichiometric Nb3Sn in First Samples Coated at Cornell," in *Proceedings of SRF 2011*, Chicago, Illinois, July 2011
- [2] S. Posen, M. Liepe, and Y. Xie, "Cornell SRF New Materials Program," in *Proceedings of IPAC 2011*, San Sebastian, Sept. 2011
- [3] S. Posen, G. Hoffstaetter, M. Liepe, and Y. Xie, "Recent Developments in Cornell Nb3Sn Initiative," in *Proceedings* of *IPAC 2012*, New Orleans, Louisiana, May 2012
- [4] S. Posen, M. Liepe, and D. Hall, "Proof-of-principle demonstration of Nb3Sn superconducting RF cavities for high Q0 applications," *App. Phys. Rev. Let.*, vol. 106, no. 8, 2015
- [5] S. Posen and M. Liepe, "Advances in development of Nb3Sn superconducting radio-frequency cavities," *Phys. Rev. ST Accel. Beams*, vol. 15, p. 112001, 2014
- [6] R. Porter, D. L. Hall, M. Liepe, and J. T. Maniscalco, "Surface Roughness Effect on the Performance of Nb₃Sn Cavities," in *Proceedings of LINAC 2016*, East Lansing, Michigan, Sept. 2016
- [7] R. Porter, F. Furuta, D. L. Hall, M. Liepe, and J. T. Maniscalco, "Effectiveness of Chemical Treatments for Reducing the Surface Roughness of Niobium-3 Tin," in *Proceedings of IPAC 2017*, Copenhagen, Denmark, May 2017
- [8] D. L. Hall, J. J. Kaufman, M. Liepe, J. T. Maniscalco, and R. Porter, "High Performance Next-Generation Nb₃Sn Cavities for Future High Efficiency SRF LINACs," in *Proceedings* of LINAC 2016, East Lansing, Michigan, Sept. 2016
- [9] S. Posen, "Understanding and Overcoming Limitation Mechanisms in NB3SN Superconducting RF Cavities" Ph.D. thesis, Phys. Dept., Cornell University, Ithaca, New York, 2014.
- [10] U. Pudasaini, G. V. Eremeev, M. J. Kelley, C. E. Reece, and J. Tuggle "Post-Processing of Nb3Sn Coated Nb," in *Proceedings of IPAC 2017*, Copenhagen, Denmark, May 2017
- [11] D. G. Myakishev, V. P. Yakovlev, "The new possibilities of SuperLANS code for evaluation of axisymmetric cavities," in *Proc. of 1995 PAC and Int. Conf. on High-Energy Accel.*, Texas, May 1995

THPB043

850

Fundamental SRF R&D Other than bulk Nb