
RIGOROUS DATA PROCESSING AND
AUTOMATIC DOCUMENTATION OF SRF COLD TESTS∗

K. G. Hernández-Chahín1†, S. Aull, N. Stapley, P. Fernandez Lopez, N. Schwerg
CERN, Geneva, Switzerland

1also at DCI-UG, Guanajuato, Mexico

Abstract
Performance curves for SRF cavities are derived from

primary quantities which are processed by software. Com-
monly, the mathematical implementation of this analysis is
hidden in software such as Excel or LabVIEW, making it
difficult to verify or to trace, while text-based programming
like Python and MATLAB require some programming skills
for review and use. As part of an initiative to consolidate
and standardise SRF data analysis tools, we present a Python
program converting a module containing the collection of
all commonly used functions into a LATEX(PDF) document
carrying all features of the implementation and allowing for
a review by SRF experts, not programmers. The resulting
document is the reference for non-experts, beginners and test
stand operators. The module is imported in any subsequent
processing and analysis steps like the symbolic analysis of
the measurement uncertainties or the study of sensitivities.
As an additional layer of protection the functions can be fur-
ther wrapped including assertions, type and sanity checks.
This process maximises function reuse, reduces the risk of
human errors and guarantees automatically validated and
documented cold test results.

INTRODUCTION
During cold tests of SRF cavities a great number of differ-

ent signals are measured and automatically recorded. The
acquisition and storage is done by test programs often written
in LabVIEW [1,2] or INSPECTOR [3]. From these primary
quantities we derive figures of merit such as the unloaded
quality factorQ0 and the accelerating gradient Eacc. The first
processing and derivation of these quantities is done immedi-
ately using the data acquisition software, where the routines
for the calculations are implemented using the programing
language provided by the software manufacture. The final
analysis of the data is conducted during the post-processing
using Excel [4], MATLAB [5] or Python [6, 7] where the
analysis routines are custom libraries of the user.

Over the last year we came across the following problems
and pitfalls of this approach:

• In LabVIEW and Excel the implementation of the anal-
ysis function is somehow hidden from the operator and
difficult to verify by the user.

• The functions have to be implemented twice, once for
the test software and once for post-processing hence
doubling the effort for maintenance.

∗ Work supported by the Beam Project (CONACYT, Mexico).
† karim.gibran.hernandez.chahin@cern.ch

• Although it is instructive and recommended for any
beginner in the field of SRF to implement their own
set of analysis functions, for routine operation a single
reviewed and protected set is needed.

• In general the implementation of mathematical expres-
sions in any programming language (graphical or text)
is cumbersome or unpleasant to read.

In order to overcome these problems the cold-test software
system should meet the following requirements:

• Single point of function definition
• Built-in documentation
• Version control
• Nesting and re-use of the core implementation
• Simple and reliable review process
• Automatic tests and sanity checks
In this paper we present an approach consisting of two

core components: 1) a central python implementation
(srf_functions) of all analysis functions as e.g. provided
in Padamsee’s book [8] and 2) an automatic documentation
tool (dokator) converting the functions and especially the
underlying code into a type-set representation for review by
SRF experts and practitioners and not programmers.

SRF_FUNCTIONS
Figure 1 shows the approach with the central element

the srf_functions. This module or library contains all
mathematical expressions used for the evaluation of the mea-
surements and used in the construction of more complex
analysis routines. These functions are used for all compu-
tations from the data taken with the measurement software
(INSPECTOR or LabVIEW) during the cold test to the post
processing of the final results.

Single Point of Function Definition
We base our approach on one single Python [6,7] module,

srf_functions, which contains the implementation of all
computations. We chose Python due to its wide spread
use, flexibility and various freely available packages. The
implementation is kept to a minimum of complexity while
placing the effort in clean definitions and documentation.

Un-typed Function Definition
In the core module we define all functions un-typed. This

means that the implementation does not rely on any specific
features as long as the used objects support standard math
operation such as + - * / ** with the latter being the
power operator in Python. Special symbols or functions like

18th International Conference on RF Superconductivity SRF2017, Lanzhou, China JACoW Publishing
ISBN: 978-3-95450-191-5 doi:10.18429/JACoW-SRF2017-TUPB069

SRF Technology R&D
Cavity

TUPB069
543

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Cross- & Sanity-Checks

Assertions

SRF Functions

Display

Measurement
Software

Measurement
Data

Report

Post Processing

Version
Control

Figure 1: Flowchart of the measurement data from the anal-
ysis tools towards the final report with the central definition
of all functions in the SRF-function module.

π can be defined in the preamble of the module and may be
overwritten on import.
This approach allows to use the functions with any kind

of Python objects supporting the aforementioned operators
which is true for numbers as well as symbols as provided by
the sympy package [9, 10].
For the construction of more complicated or coupled ex-

pressions the functions can be called and re-wrapped into
higher order systems. This, e.g., allows to automatically
derive the expressions for the loaded Q and accelerating
gradient based only on primary quantities:[

Q0
Eacc

]
(Pf ,Pr ,Pt, f ,k,κE)

=

2πPt f k

Pf −Pr−Pt√
Pt k
κE

 (1)

Built-In Documentation
A very useful Python feature are docstrings [11]. A doc-

string is the first statement in a function or class declaration
providing the user with the documentation. This can be
used to include all information necessary to understand the
function call signature, the physics behind the computation
as well as give reference to text books such as [8].

Maintaining the following conventions the docstring can
be made human and computer readable allowing for auto-
matic processing and display. The documentation consists
of the following blocks:

• Description of the greater context of the function (op-
tional).

• Definition of the parameters with their symbol, name
and unit.

• Description of the return value(s) with name, symbol
and unit.

• Optional notes for function use.
• References used in the description and/or notes.

• Examples illustrating the function use, common results
and providing a layer of tests.

Furthermore variable names may use LATEX notation such
as underscores for subscripts.

Notice that the approach is similar to common documen-
tation tools such as Epydoc [12] and also bases on features
of reStructuredText [13]. An example of the built-in
documentation is shown in Fig. 2 highlighted in red.

Version Control
The srf_function module and its documentation are

included in a version control system such as EDMS [14] or
GitLab [15] in order to keep track of all changes and mak-
ing the current version available to the team. Back-tracing
problems and evaluating improvements is aided by the open
source of the Python module and text-based comparison of
different versions of the code.

Automated Testing
Software engineering encourages the use of various test-

ing techniques as part of a software quality assurance testing
strategy to maintain the required level of reliability, reduce
the risk of failure during operation, and provide confidence
that code changes will not have any adverse affects [16].
When testing, different types of defect are found at each

level of abstraction, and the lowest level, code (unit) tests,
are often implemented to ensure correctness for individual
functions as a minimum testing requirement.
For this Python provides docstring which serves as both

simple examples of the use of the function in the documenta-
tion, and for function verification upon module import using
doctest [17]. Doctest’s power rests in its simplicity [18, p
157], but for larger more robust test scenarios unittest is
preferred.

Sanity Checks
Extending on the possibility to import and re-use the core

definitions the functions can be wrapped by a facade layer
[19] to include typing and sanity checks. This ranges from
enforcing certain data types, including assertions [20] for
certain inputs such as power reading shall be greater than a
certain minimum or zero, as well as proper error handling
to prevent the process from crashing.

LabView Import
LabVIEW is often used for cavity testing. Hence it is

advantageous to use the same math functions for the post-
processing and for the actual cavity tests. There are several
general solutions for including Python functions in Lab-
VIEW, each with its own advantages in terms of ease, and
performance. We describe three, just to demonstrate the
possibilities and provide an idea of the benefits of each.

One of the simplest solutions is to use LabVIEW ’s built-
in ability (System Exec VI) to execute a Python script
containing the math functions [21]). A new instance of the
Python script is executed every time, meaning this solution
is comparatively slow, taking more than 100 milliseconds on

18th International Conference on RF Superconductivity SRF2017, Lanzhou, China JACoW Publishing
ISBN: 978-3-95450-191-5 doi:10.18429/JACoW-SRF2017-TUPB069

TUPB069
544

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

SRF Technology R&D
Cavity

a “standard PC”. Furthermore, its necessary to develop and
maintain processing code to parse the string output from the
function into something meaningful for LabVIEW. However,
performance concerns can be mitigated, for example, by
passing sets of data as arguments to a function and which
could return an array of results to replace repeated function
calls.
For faster performance, especially for scenarios where

many repetitive calls to Python functions are required, an-
other solution would be to reduce the overhead of starting
a Python program for every call. This is typically imple-
mented by putting the functions in a Python server program
and then communicating with it by using some type of inter-
process communication such as simply a TCP socket, or
some facilitation mechanism like a message broker (see for
example using LabVIEW with ZeroMQ [22] or [23]). The
inconvenience is that the server program must be managed
and started before LabVIEW can communicate with it, and
again the inputs and outputs must be parsed in a similar way
to the first solution.
Probably the most performant and efficient solution is

by providing in-process function access within LabVIEW
by using a library to encapsulate the starting of a Python
interpreter and function execution. The conversion of basic
types between Python and LabVIEW could be included too.
However, this is not so easy to do so, meaning development
time is longer, and the library is platform specific. Be aware
that an incorrectly written library can cause instabilities or
failure for the host process (LabVIEW). A careful judgement
has to be made if the investment is worth it.

Finally convenient COTS (Commercial off-the-shelf) so-
lutions do exist such as that from Enthought [24] which
facilitates easy use of Python functions within LabVIEW ,
reducingmuch of the effort required in the previous solutions.
Enthought provides automated type conversion between Lab-
VIEW and Python, good documentation, and working ex-
amples [25].

DOKATOR
The review of the implementation of computer programs

requires at least some programming skills. If however, the
mathematical expressions are displayed in their type-set rep-
resentation, the implementation can be reviewed and ap-
proved by any SRF practitioner and expert.
We wrote a small program dokator allowing to read

the content of a well formatted module and automatically
converting it into a PDF using LATEX [26] or a webpage
using MathJax [27]. The program displays the entire built-in
documentation including the examples (tests) and type-sets
the actual implementation.
An example of the Python input and the compiled LATEX

output is shown in Fig. 2.
From the function signature we can automatically create

mathematical symbols for all arguments using sympy [9,10]
and execute the un-typed function resulting in a symbolic
expression. The symbolic expression is displayed as LATEX.

Dokator

def

return

 (omega_0, tau_L):

 omega_0 * tau_L

loaded_quality_factor
"""loaded quality factor

 The loaded quality factor Q_L of the cavity is given by [PKH]
 as the product of the angular resonance frequency ω_0 in
 1/s and τ_L the decay time-constant in s, both of the loaded
 system.

 Parameters
 ==========
 omega_0 : angular resonance frequency in 1/s
 tau_L : loaded decay time-constant in s

 Returns
 =======
 Q_L : loaded quality factor

 References
 ==========
 [PKH, Eq. 8.86] Hasan Padamsee, Jens Knobloch, and Tom Hays.
 RF Superconductivity for Accelerators. Wiley & Sons,
 second edition, 2008.

 Examples
 ========
 >>> loaded_quality_factor(400e6, .5)
 200000000.0
 """

Name
Name of the function

Function definition
Arguments can be LaTeX compatible.

Description (optional)
What does the function do,
including reference. Latex
compatible.

Parameters
Description of each input,
followed by the name of
the parameter and its unit.

Returns
Description of each output,
followed by the name of
the parameter and its unit.

Notes (optional)
Any additional information for
the understanding or
implementation of the function.

References (optional)
References used in the
description field or notes

Examples

Example of how the
function is implemented with
the expected result.
This will be used in the
doc-testing each time the
library is updated.

Figure 2: Example for a input function in Python and LATEX
output as produced by the dokator.

Anymistake in the implementation is then converted to LATEX
and is consequently visible to the reviewer, including the
possibility to catch inconsistencies in the definition on the
arguments and the description of them in the documentation.
Furthermore, sympy can infer some type-setting options

from the used variable names. So it would replace known
LATEX keywords such as eta by η and anything following
the first underscore _ by a subscript.

The software review can now be done either on the source
code or on the converted documentation. The program
dokator provides a verifiable mapping between the two
representation. The symbolic representation of the mathe-
matical functions provides further advantages for the analysis
of the SRF cold test system. Since the derivatives of the
functions can be computed analytically this allows, e.g., for
the analytical study of sensitivities or the analysis of error
propagation after GUM [28].

CONCLUSIONS AND OUTLOOK
Due the nature of SRF cold tests where the cost involved,

time for preparation and availability of helium are significant

18th International Conference on RF Superconductivity SRF2017, Lanzhou, China JACoW Publishing
ISBN: 978-3-95450-191-5 doi:10.18429/JACoW-SRF2017-TUPB069

SRF Technology R&D
Cavity

TUPB069
545

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

factors, a reliable and robust framework for the visualisation
and analysis of the measurement data is needed. Further-
more, the approach needs to be flexible to allow for modifi-
cation and experiments during the measurement campaign
while remaining verifiable, traceable and transparent.

In this paper we have outlined a software approach ad-
dressing the problems of transparency, reliability, review
and traceability of the test software during cold test and anal-
ysis. The approach is based on Python and a number of great
and free software tools / Python packages. With every of
the proposed measures the measurement process becomes
more robust and the operator gains time to concentrate on
the object under test - instead of debugging the system.

ACKNOWLEDGEMENT
Special thanks to Alick Macpherson, Alejandro Castilla

and Katarzyna Turaj for feedback.

REFERENCES
[1] National instruments: Labview. [Online]. Available: http:

//www.ni.com/en-us/shop/labview.html

[2] G. W. Johnson and R. Jennings, LabVIEW Graphical Pro-
gramming, 4th ed. McGraw-Hill Book Company, Inc., 2006.

[3] B. Lefort and M. Ferrari, “Inspector user manual -
a rapid development application for cern instrumen-
tation,” CERN Manual, April 2014. [Online]. Avail-
able: https://espace.cern.ch/AD-site/Inspector/
inspector%20User%20Manual.pdf

[4] Microsoft: Excel. [Online]. Available: https://products.
office.com/en-us/excel

[5] Mathworks: Matlab. [Online]. Available: https://www.
mathworks.com/products/matlab.html

[6] Python software foundation. [Online]. Available: https:
//www.python.org/

[7] (2013, December) pythonxy - scientific-oriented python dis-
tribution based on qt and spyder. [Online]. Available: http:
//code.google.com/p/pythonxy/wiki/Welcome

[8] H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity
for Accelerators, 2nd ed. Wiley & Sons, 2008.

[9] (2013, December) Sympy. [Online]. Available: http:
//sympy.org/en/index.html

[10] “Sympy documentation,” SymPy Development Team,
November 2014.

[11] Pep 257 – docstring conventions. [Online]. Available:
https://www.python.org/dev/peps/pep-0257/

[12] Epydoc - automatic api documentation generation for python.
[Online]. Available: http://epydoc.sourceforge.net/

[13] R. Jones, “A ReStructuredText Primer,” docu-
tils.sourceforge.net, March 2013. [Online]. Avail-
able: http://docutils.sourceforge.net/docs/
user/rst/quickstart.html

[14] Cern: Engineering data management service (edms).
[Online]. Available: http://edms-service.web.cern.
ch/edms-service/faq/EDMS/pages/

[15] Gitlab. [Online]. Available: https://about.gitlab.
com/

[16] S. et al., Software Testing Foundations, 4th ed. RockyNook
Inc., 2014.

[17] “doctest - test interactive python examples,” Python
Documentation, 2.7.13. [Online]. Available: https://
docs.python.org/2/library/doctest.html

[18] A. Maxwell, Powerful Python, 2nd ed. Powerful Python
Press, 2017.

[19] Facade pattern. [Online]. Available: https://en.
wikipedia.org/wiki/Facade_pattern

[20] Using assertions effectively. [Online]. Avail-
able: https://wiki.python.org/moin/
UsingAssertionsEffectively

[21] Call Perl and Python Scripts from LabVIEW, National
Instruments, March 2016. [Online]. Available: http:
//www.ni.com/tutorial/8493/en/

[22] zeromq - super socket bindings for labview. [Online].
Available: http://labview-zmq.sourceforge.net/

[23] Python-labview communication. [Online]. Available: https:
//github.com/Kricki/py-lv-comm

[24] Enthought, inc. [Online]. Available: https://www.
enthought.com/

[25] Python Integration Toolkit - Examples, Enthought, 2016.
[Online]. Available: http://docs.enthought.com/
python-for-LabVIEW/guide/examples.html

[26] L. Lamport, LATEX: a document preparation system : user’s
guide and reference manual. Addison-Wesley Pub. Co.,
1994, no. p. 2.

[27] American mathematical society mathjax consortium. [On-
line]. Available: https://www.mathjax.org/

[28] “Evaluation of measurement data — guide to the expression
of uncertainty in measurement,” JCGM 100:2008, 2008. [On-
line]. Available: http://www.bipm.org/utils/common/
documents/jcgm/JCGM_100_2008_E.pdf

18th International Conference on RF Superconductivity SRF2017, Lanzhou, China JACoW Publishing
ISBN: 978-3-95450-191-5 doi:10.18429/JACoW-SRF2017-TUPB069

TUPB069
546

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

SRF Technology R&D
Cavity

