EXPERIMENTS ON THE RF SURFACE RESISTANCE OF THE PEROVSKITE SUPERCONDUCTORS AT 3 GHZ

M.Hein, N.Klein, G.Müller, H.Piel, R.W.Röth

Fachbereich Physik der Bergischen Universität Wuppertal, Western Germany

I. INTRODUCTION

Since the discovery of the perovskite superconductors many experiments to explore their physical properties have been performed and various potential applications have been considered. The high critical temperature of more than 90 K obtained with $Y_1 Ba_2 Cu_3 O_{7-\delta}$ (Y may be substituted by other rare earth elements) makes these superconductors interesting for applications in microwave technology. This has focused our interest on the investigation of their rf properties. Due to the sensitivity of the rf surface resistance to surface impurities and remaining non superconducting phases rf measurements are a good means to provide useful informations about the quality of sample preparation and about physical properties of the superconductor itself.

This contribution reports on the experimental determination of the rf surface resistance of $Y_1Ba_2Cu_3O_{7-\delta}$ and $Eu_1Ba_2Cu_3O_{7-\delta}$ in the normal and superconducting state at 3 GHz. In the first chapter the preparation of the ceramic samples and initial dc experiments are described. The main part of the paper describes the rf measurements which are performed in a superconducting niobium "host cavity". The obtained results for both the surface resistance and the high field performance are discussed with respect to the preparation of the samples and regarding possible applications.

II. SAMPLE PREPARATION AND INITIAL EXPERIMENTS

Stoichiometric mixtures of high purity powders ($\ge 99,99\%$) of Y_2O_3 and Eu_2O_3 respectively, $BaCO_3$ and CuO were ball milled using agate devices. In the case of our first sample W3-T2 manual grinding was applied. After a heat treatment in air at $930^{\circ}C$ and a final ball milling pellets with 13 mm diameter and 1,6 mm thickness were pressed with a pressure of 7 kbar. The pellets were annealed in a pure oxygen atmosphere at $930^{\circ}C$ for at least 6 hours and then slowly

cooled down to room temperature. For each experiment several samples are prepared under identical conditions. First some measurements are performed to obtain an initial quality assurance. The diamagnetic behaviour is tested by placing the superconducting pellet underneath a permanent magnet which rests on the tray of a sensitive scale. The weight reduction of this "calibration magnet" is used as a relative measure of the bulk susceptibility of a pellet (table 1).

Fig.1: Temperature dependence of the dc resistance of sample W1-E2 measured by a four point technique with a midpoint of T_{CM} = 91.8 K and a transition width (10 - 90%) of 0.9 K.

The dc resistance is measured using a standard four lead and lock in amplifier technique . In fig. 1 the temperature dependence of one of our samples is presented. The transition width from 10 to 90 % of the normal conducting resistance just above the critical temperature is less than 1 K. Values of both the transition width $\Delta T_{\rm C}$ and the critical temperature $T_{\rm CM}$ measured at the midpoint of the transition are summarized in table 1.

III. RF MEASUREMENTS

a) Surface resistance

The rf surface resistance of $Y_1Ba_2Cu_3O_{7-\delta}$ (Eu₁Ba₂Cu₃O_{7-\delta}) samples was measured by exposing them to the rf field of a niobium cavity at 3 GHz in a temperature range from 4.2 to 300 K. The pellet is located in the high magnetic field region of the cavity (fig. 2) which is cooled in liquid helium. At 4.2 K the host cavity is superconducting and the rf residual losses of the pellet can be measured¹). The sample is just laid on the cavity surface. In order to avoid con-

Fig. 2: Experimental setup for measuring the rf losses of superconducting pellets. tact currents between the sample and the niobium surface the cavity was covered with a highly insulting layer of Nb_2O_5 (thickness: 600Å) by anodizing. The cooling of the pellet is provided by helium gas at a pressure of 20 mbar inside the cavity.

During the slow warming up of the cavity the difference between the lower and the upper resistor thermometers was less than 2 K. The surface resistance R_s = G/Q_0 of the sample has been derived from the difference of the inverse Q_o values with and without a sample (fig. 3a) ².) The geometry factor G of 6800 Ω \pm 10% was determined by calibration measurements with samples of well known resistivity (stainless steel and bismuth). Fig. 3b shows the temperature dependence of the rf surface resistance R $_{\rm S}$ of sample W7-T6. The residual surface resistance of the sample was measured at 4.2 K (dashed line) when the host cavity is superconducting. The metallic behaviour of the sample surface is well demonstrated by the resistance above 100 K. Using the normal skin effect formula R_s (300 K) corresponds to a resistivity $\rho(300K)$ of $400 \mu\Omega cm$. This value agrees well with the 600 ± 150 $\mu\Omega$ cm found in the dc measurements $^{2)}$, especially if one takes into account the porosity of the sample which is about 25%.

Fig.3: a) Temperature dependence of the inverse quality factor measured with sample W7-T6. The decrease of the rf losses (~ Q_0^{-1}) at about 90 K shows rf superconductivity of $Y_1Ba_2Cu_3O_{7-\delta}$. At lower temperatures the Joule losses of the normal conducting niobium cavity (dotted line) dominate.

b) Surface resistance R_s derived from fig. 3a.

In table 1 the preparation parameters, the results of both the dc and rf measurements of all our samples are summarized. For the majority of the samples values for the residual surface resistance R_s (4.2K) of less than 1 m Ω were obtained.

Even the lowest R_{res} value achieved of 0.16 m Ω is very high compared to the nanoohms obtained with superconducting niobium. We attribute this result to an imperfect microscopic stoichiometry of our ceramic samples. The first significant improvement of R_{res} was achieved when the manual grinding of the powders (W3T2) was replaced by a ball milling procedure (W7T6). The stoichiometry of the metal compounds within single grains was measured using energy dispersive X-ray analysis with a scanning electron microscope. In sample W3T2 local deviations of the stoichiometry from the nominal composition and even unreacted particles of CuO were found (fig. 4a).

In comparison in sample W7T6 no unreacted particles were found and the stoichiometry measured from grain to grain was found to deviate from the nominal compositon only within errors (fig.4b).

Fig. 5 exhibits a definite correlation between the residual surface resistance and the duration of the heat treatment $t_1 + t_2$. This supports our assumption that the residual losses of our samples are partially caused by a poor microscopic stoichiometry.

Sample No.	comp. ¹⁾	prepar t ₁ [h]	ration ²⁾ t ₂ [h]	p [g/cm ³]	T _C M [K]	ΔTC ³⁾ [Kl	<u>∆m</u> 4) m	300 K	[m0] 77K	4.2 K	H _{max} [A/m]	H _{S0} [A/m]	βs)	
W3-T2 W7-T6 W9-T5 W9-T5 W13-T1 W13-T1 W13-T1 W13-T1 W19-T1 W19-T1 W1-E2 OFHC	YBaCuO YBaCuO YBaCuO YBaCuO YBaCuO YBaCuO YBaCuO EuBaCuO YBaCuO	16 20 67 62 64 68	6 24 152 65 30 20 70	5.6 5.1 5.1 5.7 5.7	90.0 92.0 92.5 92.5 92.0 91.8	5.5 1.0 1.2 1.9 0.9	0.081 0.275 0.417 0.417 0.116	370±50 250±30 210±30 200±40 160±30 181±31 142±26 170±30 360±60 13.7	225 21410 215 215 215 210 210 210 210 213 25.3	$\begin{array}{c} 1.80 \pm 0.50\\ 0.62 \pm 0.47\\ 0.42 \pm 0.14\\ 0.42 \pm 0.14\\ 0.16 \pm 0.03\\ 0.29 \pm 0.04\\ 0.30 \pm 0.04\\ 0.35 \pm 0.10\\ 0.55 \pm 0.10\\ 0.2 \pm 0.1\\ 0.56 \pm 0.08\\ 2.5\end{array}$	340±20 690±43 440±55 440±55 402±26 563±65 563±65 463±31 540±72 547±36 171±20	3.5 13.8 11 37 0.45	0.73 0.67 0.79 1.09 0.65	
Table 1:	Comparisc parameter 1) YBaCu ⁽ 2) t ₁ : du at 930 at 930 portion	m of tl s at 3 O: Y ₁ B ration ^O C ir weigh	he prepa GHz of (Sa2Cu3O of powd n pure o it loss o the magn	uration par different sa 7-8 EuBa(ler anneali kygen. f a calibra netic bulk	amete mples CuO: F ng in a tion r tion r	rs, the . Furthe Eu ₁ Ba ₂ C air at 93 ar at 93 nagnet (dc mea r detai u307-8 0 C. t ₂ due to	ls conce is conce : durati diamagn	ts and rning on of etic s	d the charac the preparati final anneal hielding (me	teristic rf a on are giv ing of the easured at	superco en in tl presse 77 K)	nductivity ne text. id pellet , pro-	

4) transition width from 10 to 90% of the resistance in the n.c. state just above $T_C \cdot T_{CM}$ is the midpoint transition temperature.

5) At field levels below H_0 the Q_0 value decreases weakly with growing H_S , at higher field levels Q_0 decreases according to Q_0 (H_S)= $H_S^{-\beta}$.

Fig.4: Electron micrographs of $Y_1Ba_2Cu_3O_{7-\delta}$ samples (x 1250) a) W3T2 (upper) b) W7T6

Fig. 5: Dependence of the residual surface resistance $R_S(4.2 \text{ K})$ from the annealing time $t=t_1+t_2$. The corresponding values for $R_S(4.2 \text{ K})$, t_1 and t_2 are given in table 1.

In fig. 6 the temperature dependence of the surface resistance for W12-T6 is compared with niobium, Nb₃Sn and OFHC copper. The residual surface resistance of the $Y_1Ba_2Cu_3O_{7-\delta}$ sample is more that one order of magnitude lower than the corresponding value of OFHC copper but still three orders of magnitude higher than the corresponding values of niobium and Nb₃Sn respectively. At liquid nitrogen temperatures, however, the quality factor of a cavity consisting of pure $Y_1Ba_2Cu_3O_{7-\delta}$ is at least as high as for a cavity consisting of any known material and most likely a factor of 10 higher. This uncertainty results from our present inability to measure the surface resistance at 77 K with a good enough accuracy.

b) high field performance

The high field performance of each sample was measured at a temperature of 4.2 K. In order to minimize rf heating of the whole sample pulsed rf operation (pulse length: 100 μ sec, duty cyle: 10⁻³) was applied. A typical measurement

Fig. 6: Comparison of the temperature dependence of the surface resistance R_S of $Y_1 Ba_2 Cu_3 O_{7-\delta}$, niobium³⁾, Nb₃Sn ⁴⁾ and OFHC-copper. The dashed lines were extrapolated. The values for OFHC copper values were scaled from ref. 5 using a f^{2/3} frequency dependence predicted by anomalous skin effect theory. The values for niobium above T_C were calculated using normal skin effect theory.

SRF87B04

of the quality factor Q_0 of the cavity versus the magnetic field H_S at the location of the pellet is shown in fig 7. Up to a field level H_{S0} the Q_0 value decreases slowly with growing H_S . At higher field levels the Q_0 value decreases according to $Q_0(H_S) \approx {H_S}^{-\beta}$. At a field level H_{Smax} quenching of the cavity field occured.

The Q₀ value just below H_{Smax} was more than one order of magnitude higher than the corresponding value of the normal conducting sample indicating that most of the sample is still superconducting. Therefore a current density of about H_{Smax}/ λ_L exists at the surface of the new superconductor. Measurements of the London penetration depth λ_L of Y₁Ba₂Cu₃O_{7-\delta} using muon spin rotation⁶) give a value of 0.14 µm at 4.2K. Using this value the maximum obtained field of 690 A/m (table 1) leads to a surface current density of $4.9 \cdot 10^5$ A/cm². For an accelerating cavity consisting of pure Y₁Ba₂Cu₃O_{7-\delta} this maximum field level corresponds to an accelerating field of 0.2 MV/m. Due to a field enhancement at some parts of the surface of the sample these values give lower bounds. Due to the poor cooling conditions of the samples thermal effects are likely to be responsible for the strong decrease of the Q₀ values with growing magnetic field (table 1).

Fig.7: Q_0 degradation of the superconducting niobium cavity due to the Joule losses in a $Y_1Ba_2Cu_3O_{7-\delta}$ sample (W13-T1) as a function of the magnetic field at the surface of the sample.

In order to improve the cooling conditions and to exclude field enhancement further experiments will be performed using the samples as endplates of TE011 cavities. Then the obtained results can be compared with model calculations of the thermal field breakdown. The low value for the thermal conductivty of 0.02 W/mK (ref.7) for $Y_1Ba_2Cu_3O_{7-\delta}$ indicates that for an application in accelerating cavities surface layers of the new superconductors are required. One possibility to obtain such layers would be to work with emulsions of $Y_1Ba_2Cu_3O_{7-\delta}$ prepared from reacted and then powdered (ball milled) $Y_1 Ba_2 Cu_3 O_{7-\delta}$. It is therefore important to find out if $Y_1 Ba_2 Cu_3 O_{7-\delta}$ is still superconducting after the ball milling process during which the micron sized particles are exposed to high pressure and temperatures. If superconductivity in such powders is destroyed it is valuable to know the annealing temperature at which the superconducting transport properties are restored. To obtain these informations we ball milled four of our tested samples, pressed them into pellets again and annealed them at different temperatures. After each of these steps their surface resistance was measured at 300 and 77K. The results are summarized in table 2.

sample	$mole$ $R_{c}[m\Omega]$		$\frac{\text{reground}}{R_{S}[m\Omega]}$		reannealed T[⁰ C] R_S[m Ω]		mΩ]
-	300 K	77 K	300 K	77 K		300 K	77 K
W13-T1	170±30	≤ 1 0	374±58	176±28	650	614±93	860±128
W18-T1	378±59	37±10	1240±190	382±58	750	428±66	315±48
W18-T3	315±50	37±10	602±91	221±34	850	253±41	39±10
W7-T6	250±30	31±10	2300±300	900±100	925	170±30	22±11

Table 2: Performance of superconducting $Y_1Ba_2Cu_3O_{7-\delta}$ pellets (first column) after an additional ball milling and pressing (second column) and after a subsequent annealing in the temperature range from 650 to $925^{\circ}C$.

It is observed that the superconducting transport properties are completely lost after the ball milling procedure. This although a diminished Meißner effect could still be found. We interprete this result by assuming that the superconducting properties of a thin surface layer of the powder grains are destroyed, whereas the interior of the grains is undisturbed. A restauration of this damage layer and a contacting of the individual grains to a superconducting ceramic pellet was achieved at temperatures between 850 and $925^{\circ}C$ under pure oxygen. After a heat treatment at 750 °C the sample remained normalconducting at 77K but exhibits a metal like behaviour. In the case of a heat treatment at $650^{\circ}C$ the surface resistance increases with decreasing temperature indicating a semiconductor like behaviour which was confirmed by a dc resistance measurement.

IV. CONCLUSIONS

In this contribution first rf surface resistance measurements at 3 GHz with the new perovskite superconductors are discussed. A minimum surface resistance of 0.16 m Ω has been achieved for a Y₁Ba₂Cu₃O₇ sample at 4.2K and low field level. This is more than one order of magnitude lower than the surface resistance of high purity copper but about three orders of magnitude higher than the surface resistance of niobium and Nb₃Sn at the same temperature.

At a surface magnetic field of 690 A/m parts of one sample are still superconducting. For an accelerating cavity consisting of pure $Y_1Ba_2Cu_3O_{7-\delta}$ this field corresponds to an accelerating field of 0.2 MV/m. The high field performance of the samples are probably limited by the bad cooling conditions.

It was observed that after a new grinding and pressing of samples rf superconductivity was completely lost. A recovery of the sample was achieved by a further heat treatment at temperatures above 850° C in a pure oxygen atmosphere. The initial values of the surface resistance were reproduced.

Further experiments will be performed using perovskite samples as endplates of a TE011 cavity. Besides these activities further work will be concentrated on the preparation and rf measurements of surface layers of the new material.

ACKNOWLEDGEMENTS

We very much acknowledge the support of J. Adam and W. Weingarten from CERN who supplied us with the SEM analysis of our samples. We also appreciate very much the support of Interatom GmbH., Bensberg, which supplied us with a Hewlett Packard 8340B Synthesized Sweeper for our Q measurements.

This work has been funded in part by the German Federal Minister for Research - and Technology (BMFT) under the contract numbers 05 4WT 85I (1) and 13N5371/4 (group project)

Proceedings of The Third Workshop on RF Superconductivity, Argonne National Laboratory, Illinois, USA

References:

- 1) M.Hagen, M.Hein, N.Klein, A. Michalke, F.M.Mueller, G.Müller, H.Piel, R.W.Röth, H.Sheinberg, and J.-L.Smith, "Observation of RF superconductivity in $Y_1 Ba_2 Cu_3 O_{7-\delta}$ at 3 GHz", Journal of Magnetism and Magnetic Materials 68 (1987)
- 2) M.Hein, N. Klein, F.M. Mueller, G. Müller, H.Piel, R.W. Röth, W. Weingarten, J.O. Willis, "On the RF surface resistance of the perovskite superconductors at 3 GHz", Proceedings of the 1st European Workshop on High T_C Superconductors and Potential Applications, Genova (July 1987)
- 3) H. Elias, University of Wuppertal, Diplomarbeit, Report WU D 85 12
- 4) M. Peiniger, University of Wuppertal, private communication
- 5) D. Liska, J. Uher, J. Potter, "Cryogenic Studies of RF Accelerating Structures", Proc. of the 1986 Linear Accelerator Conference, SLAC, Stanford
- 6) W. Cooke, Los Alamos National Laboratory, private communication
- 7) M. Hagen, University of Wuppertal, private communication.

Proceedings of The Third Workshop on RF Superconductivity, Argonne National Laboratory, Illinois, USA